Metamath Proof Explorer


Theorem frege53b

Description: Lemma for frege102 (via frege92 ). Proposition 53 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege53b ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝑦 = 𝑧 → [ 𝑧 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 frege52b ( 𝑦 = 𝑧 → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) )
2 ax-frege8 ( ( 𝑦 = 𝑧 → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝑦 = 𝑧 → [ 𝑧 / 𝑥 ] 𝜑 ) ) )
3 1 2 ax-mp ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝑦 = 𝑧 → [ 𝑧 / 𝑥 ] 𝜑 ) )