Metamath Proof Explorer


Theorem frege53b

Description: Lemma for frege102 (via frege92 ). Proposition 53 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege53b
|- ( [ y / x ] ph -> ( y = z -> [ z / x ] ph ) )

Proof

Step Hyp Ref Expression
1 frege52b
 |-  ( y = z -> ( [ y / x ] ph -> [ z / x ] ph ) )
2 ax-frege8
 |-  ( ( y = z -> ( [ y / x ] ph -> [ z / x ] ph ) ) -> ( [ y / x ] ph -> ( y = z -> [ z / x ] ph ) ) )
3 1 2 ax-mp
 |-  ( [ y / x ] ph -> ( y = z -> [ z / x ] ph ) )