Metamath Proof Explorer


Theorem frege56aid

Description: Lemma for frege57aid . Proposition 56 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege56aid ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜓𝜑 ) → ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 frege55aid ( ( 𝜓𝜑 ) → ( 𝜑𝜓 ) )
2 frege9 ( ( ( 𝜓𝜑 ) → ( 𝜑𝜓 ) ) → ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜓𝜑 ) → ( 𝜑𝜓 ) ) ) )
3 1 2 ax-mp ( ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) ) → ( ( 𝜓𝜑 ) → ( 𝜑𝜓 ) ) )