Metamath Proof Explorer


Theorem frege56aid

Description: Lemma for frege57aid . Proposition 56 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege56aid
|- ( ( ( ph <-> ps ) -> ( ph -> ps ) ) -> ( ( ps <-> ph ) -> ( ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 frege55aid
 |-  ( ( ps <-> ph ) -> ( ph <-> ps ) )
2 frege9
 |-  ( ( ( ps <-> ph ) -> ( ph <-> ps ) ) -> ( ( ( ph <-> ps ) -> ( ph -> ps ) ) -> ( ( ps <-> ph ) -> ( ph -> ps ) ) ) )
3 1 2 ax-mp
 |-  ( ( ( ph <-> ps ) -> ( ph -> ps ) ) -> ( ( ps <-> ph ) -> ( ph -> ps ) ) )