Description: Proposition 63 of Frege1879 p. 52. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege63a | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( 𝜂 → ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege62a | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) | |
2 | frege24 | ⊢ ( ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( 𝜂 → ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( 𝜂 → ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) ) |