Metamath Proof Explorer


Theorem frege63a

Description: Proposition 63 of Frege1879 p. 52. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege63a ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( 𝜂 → ( ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege62a ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) )
2 frege24 ( ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( 𝜂 → ( ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) ) )
3 1 2 ax-mp ( if- ( 𝜑 , 𝜓 , 𝜃 ) → ( 𝜂 → ( ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) )