Description: Proposition 63 of Frege1879 p. 52. (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege63a | |- ( if- ( ph , ps , th ) -> ( et -> ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> if- ( ph , ch , ta ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege62a | |- ( if- ( ph , ps , th ) -> ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> if- ( ph , ch , ta ) ) ) |
|
2 | frege24 | |- ( ( if- ( ph , ps , th ) -> ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> if- ( ph , ch , ta ) ) ) -> ( if- ( ph , ps , th ) -> ( et -> ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> if- ( ph , ch , ta ) ) ) ) ) |
|
3 | 1 2 | ax-mp | |- ( if- ( ph , ps , th ) -> ( et -> ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> if- ( ph , ch , ta ) ) ) ) |