| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpup.b | ⊢ 𝐵  =  ( Base ‘ 𝐻 ) | 
						
							| 2 |  | frgpup.n | ⊢ 𝑁  =  ( invg ‘ 𝐻 ) | 
						
							| 3 |  | frgpup.t | ⊢ 𝑇  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 4 |  | frgpup.h | ⊢ ( 𝜑  →  𝐻  ∈  Grp ) | 
						
							| 5 |  | frgpup.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | frgpup.a | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ 𝐵 ) | 
						
							| 7 |  | frgpup.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 8 |  | frgpup.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 9 |  | frgpup.g | ⊢ 𝐺  =  ( freeGrp ‘ 𝐼 ) | 
						
							| 10 |  | frgpup.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 11 |  | frgpup.e | ⊢ 𝐸  =  ran  ( 𝑔  ∈  𝑊  ↦  〈 [ 𝑔 ]  ∼  ,  ( 𝐻  Σg  ( 𝑇  ∘  𝑔 ) ) 〉 ) | 
						
							| 12 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝑊 )  →  ( 𝐻  Σg  ( 𝑇  ∘  𝑔 ) )  ∈  V ) | 
						
							| 13 | 7 8 | efger | ⊢  ∼   Er  𝑊 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →   ∼   Er  𝑊 ) | 
						
							| 15 | 7 | fvexi | ⊢ 𝑊  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  𝑊  ∈  V ) | 
						
							| 17 |  | coeq2 | ⊢ ( 𝑔  =  𝐴  →  ( 𝑇  ∘  𝑔 )  =  ( 𝑇  ∘  𝐴 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑔  =  𝐴  →  ( 𝐻  Σg  ( 𝑇  ∘  𝑔 ) )  =  ( 𝐻  Σg  ( 𝑇  ∘  𝐴 ) ) ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupf | ⊢ ( 𝜑  →  𝐸 : 𝑋 ⟶ 𝐵 ) | 
						
							| 20 | 19 | ffund | ⊢ ( 𝜑  →  Fun  𝐸 ) | 
						
							| 21 | 11 12 14 16 18 20 | qliftval | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝑊 )  →  ( 𝐸 ‘ [ 𝐴 ]  ∼  )  =  ( 𝐻  Σg  ( 𝑇  ∘  𝐴 ) ) ) |