Metamath Proof Explorer


Theorem frgpupval

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpup.b 𝐵 = ( Base ‘ 𝐻 )
frgpup.n 𝑁 = ( invg𝐻 )
frgpup.t 𝑇 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹𝑦 ) , ( 𝑁 ‘ ( 𝐹𝑦 ) ) ) )
frgpup.h ( 𝜑𝐻 ∈ Grp )
frgpup.i ( 𝜑𝐼𝑉 )
frgpup.a ( 𝜑𝐹 : 𝐼𝐵 )
frgpup.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
frgpup.r = ( ~FG𝐼 )
frgpup.g 𝐺 = ( freeGrp ‘ 𝐼 )
frgpup.x 𝑋 = ( Base ‘ 𝐺 )
frgpup.e 𝐸 = ran ( 𝑔𝑊 ↦ ⟨ [ 𝑔 ] , ( 𝐻 Σg ( 𝑇𝑔 ) ) ⟩ )
Assertion frgpupval ( ( 𝜑𝐴𝑊 ) → ( 𝐸 ‘ [ 𝐴 ] ) = ( 𝐻 Σg ( 𝑇𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 frgpup.b 𝐵 = ( Base ‘ 𝐻 )
2 frgpup.n 𝑁 = ( invg𝐻 )
3 frgpup.t 𝑇 = ( 𝑦𝐼 , 𝑧 ∈ 2o ↦ if ( 𝑧 = ∅ , ( 𝐹𝑦 ) , ( 𝑁 ‘ ( 𝐹𝑦 ) ) ) )
4 frgpup.h ( 𝜑𝐻 ∈ Grp )
5 frgpup.i ( 𝜑𝐼𝑉 )
6 frgpup.a ( 𝜑𝐹 : 𝐼𝐵 )
7 frgpup.w 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) )
8 frgpup.r = ( ~FG𝐼 )
9 frgpup.g 𝐺 = ( freeGrp ‘ 𝐼 )
10 frgpup.x 𝑋 = ( Base ‘ 𝐺 )
11 frgpup.e 𝐸 = ran ( 𝑔𝑊 ↦ ⟨ [ 𝑔 ] , ( 𝐻 Σg ( 𝑇𝑔 ) ) ⟩ )
12 ovexd ( ( 𝜑𝑔𝑊 ) → ( 𝐻 Σg ( 𝑇𝑔 ) ) ∈ V )
13 7 8 efger Er 𝑊
14 13 a1i ( 𝜑 Er 𝑊 )
15 7 fvexi 𝑊 ∈ V
16 15 a1i ( 𝜑𝑊 ∈ V )
17 coeq2 ( 𝑔 = 𝐴 → ( 𝑇𝑔 ) = ( 𝑇𝐴 ) )
18 17 oveq2d ( 𝑔 = 𝐴 → ( 𝐻 Σg ( 𝑇𝑔 ) ) = ( 𝐻 Σg ( 𝑇𝐴 ) ) )
19 1 2 3 4 5 6 7 8 9 10 11 frgpupf ( 𝜑𝐸 : 𝑋𝐵 )
20 19 ffund ( 𝜑 → Fun 𝐸 )
21 11 12 14 16 18 20 qliftval ( ( 𝜑𝐴𝑊 ) → ( 𝐸 ‘ [ 𝐴 ] ) = ( 𝐻 Σg ( 𝑇𝐴 ) ) )