Metamath Proof Explorer


Theorem frgpupval

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpup.b B=BaseH
frgpup.n N=invgH
frgpup.t T=yI,z2𝑜ifz=FyNFy
frgpup.h φHGrp
frgpup.i φIV
frgpup.a φF:IB
frgpup.w W=IWordI×2𝑜
frgpup.r ˙=~FGI
frgpup.g G=freeGrpI
frgpup.x X=BaseG
frgpup.e E=rangWg˙HTg
Assertion frgpupval φAWEA˙=HTA

Proof

Step Hyp Ref Expression
1 frgpup.b B=BaseH
2 frgpup.n N=invgH
3 frgpup.t T=yI,z2𝑜ifz=FyNFy
4 frgpup.h φHGrp
5 frgpup.i φIV
6 frgpup.a φF:IB
7 frgpup.w W=IWordI×2𝑜
8 frgpup.r ˙=~FGI
9 frgpup.g G=freeGrpI
10 frgpup.x X=BaseG
11 frgpup.e E=rangWg˙HTg
12 ovexd φgWHTgV
13 7 8 efger ˙ErW
14 13 a1i φ˙ErW
15 7 fvexi WV
16 15 a1i φWV
17 coeq2 g=ATg=TA
18 17 oveq2d g=AHTg=HTA
19 1 2 3 4 5 6 7 8 9 10 11 frgpupf φE:XB
20 19 ffund φFunE
21 11 12 14 16 18 20 qliftval φAWEA˙=HTA