Metamath Proof Explorer


Theorem frgpupf

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpup.b B = Base H
frgpup.n N = inv g H
frgpup.t T = y I , z 2 𝑜 if z = F y N F y
frgpup.h φ H Grp
frgpup.i φ I V
frgpup.a φ F : I B
frgpup.w W = I Word I × 2 𝑜
frgpup.r ˙ = ~ FG I
frgpup.g G = freeGrp I
frgpup.x X = Base G
frgpup.e E = ran g W g ˙ H T g
Assertion frgpupf φ E : X B

Proof

Step Hyp Ref Expression
1 frgpup.b B = Base H
2 frgpup.n N = inv g H
3 frgpup.t T = y I , z 2 𝑜 if z = F y N F y
4 frgpup.h φ H Grp
5 frgpup.i φ I V
6 frgpup.a φ F : I B
7 frgpup.w W = I Word I × 2 𝑜
8 frgpup.r ˙ = ~ FG I
9 frgpup.g G = freeGrp I
10 frgpup.x X = Base G
11 frgpup.e E = ran g W g ˙ H T g
12 4 grpmndd φ H Mnd
13 fviss I Word I × 2 𝑜 Word I × 2 𝑜
14 7 13 eqsstri W Word I × 2 𝑜
15 14 sseli g W g Word I × 2 𝑜
16 1 2 3 4 5 6 frgpuptf φ T : I × 2 𝑜 B
17 wrdco g Word I × 2 𝑜 T : I × 2 𝑜 B T g Word B
18 15 16 17 syl2anr φ g W T g Word B
19 1 gsumwcl H Mnd T g Word B H T g B
20 12 18 19 syl2an2r φ g W H T g B
21 7 8 efger ˙ Er W
22 21 a1i φ ˙ Er W
23 7 fvexi W V
24 23 a1i φ W V
25 coeq2 g = h T g = T h
26 25 oveq2d g = h H T g = H T h
27 1 2 3 4 5 6 7 8 frgpuplem φ g ˙ h H T g = H T h
28 11 20 22 24 26 27 qliftfund φ Fun E
29 11 20 22 24 qliftf φ Fun E E : W / ˙ B
30 28 29 mpbid φ E : W / ˙ B
31 eqid freeMnd I × 2 𝑜 = freeMnd I × 2 𝑜
32 9 31 8 frgpval I V G = freeMnd I × 2 𝑜 / 𝑠 ˙
33 5 32 syl φ G = freeMnd I × 2 𝑜 / 𝑠 ˙
34 2on 2 𝑜 On
35 xpexg I V 2 𝑜 On I × 2 𝑜 V
36 5 34 35 sylancl φ I × 2 𝑜 V
37 wrdexg I × 2 𝑜 V Word I × 2 𝑜 V
38 fvi Word I × 2 𝑜 V I Word I × 2 𝑜 = Word I × 2 𝑜
39 36 37 38 3syl φ I Word I × 2 𝑜 = Word I × 2 𝑜
40 7 39 syl5eq φ W = Word I × 2 𝑜
41 eqid Base freeMnd I × 2 𝑜 = Base freeMnd I × 2 𝑜
42 31 41 frmdbas I × 2 𝑜 V Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
43 36 42 syl φ Base freeMnd I × 2 𝑜 = Word I × 2 𝑜
44 40 43 eqtr4d φ W = Base freeMnd I × 2 𝑜
45 8 fvexi ˙ V
46 45 a1i φ ˙ V
47 fvexd φ freeMnd I × 2 𝑜 V
48 33 44 46 47 qusbas φ W / ˙ = Base G
49 10 48 eqtr4id φ X = W / ˙
50 49 feq2d φ E : X B E : W / ˙ B
51 30 50 mpbird φ E : X B