| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpup.b |  |-  B = ( Base ` H ) | 
						
							| 2 |  | frgpup.n |  |-  N = ( invg ` H ) | 
						
							| 3 |  | frgpup.t |  |-  T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) | 
						
							| 4 |  | frgpup.h |  |-  ( ph -> H e. Grp ) | 
						
							| 5 |  | frgpup.i |  |-  ( ph -> I e. V ) | 
						
							| 6 |  | frgpup.a |  |-  ( ph -> F : I --> B ) | 
						
							| 7 |  | frgpup.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 8 |  | frgpup.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 9 |  | frgpup.g |  |-  G = ( freeGrp ` I ) | 
						
							| 10 |  | frgpup.x |  |-  X = ( Base ` G ) | 
						
							| 11 |  | frgpup.e |  |-  E = ran ( g e. W |-> <. [ g ] .~ , ( H gsum ( T o. g ) ) >. ) | 
						
							| 12 | 4 | grpmndd |  |-  ( ph -> H e. Mnd ) | 
						
							| 13 |  | fviss |  |-  ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) | 
						
							| 14 | 7 13 | eqsstri |  |-  W C_ Word ( I X. 2o ) | 
						
							| 15 | 14 | sseli |  |-  ( g e. W -> g e. Word ( I X. 2o ) ) | 
						
							| 16 | 1 2 3 4 5 6 | frgpuptf |  |-  ( ph -> T : ( I X. 2o ) --> B ) | 
						
							| 17 |  | wrdco |  |-  ( ( g e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. g ) e. Word B ) | 
						
							| 18 | 15 16 17 | syl2anr |  |-  ( ( ph /\ g e. W ) -> ( T o. g ) e. Word B ) | 
						
							| 19 | 1 | gsumwcl |  |-  ( ( H e. Mnd /\ ( T o. g ) e. Word B ) -> ( H gsum ( T o. g ) ) e. B ) | 
						
							| 20 | 12 18 19 | syl2an2r |  |-  ( ( ph /\ g e. W ) -> ( H gsum ( T o. g ) ) e. B ) | 
						
							| 21 | 7 8 | efger |  |-  .~ Er W | 
						
							| 22 | 21 | a1i |  |-  ( ph -> .~ Er W ) | 
						
							| 23 | 7 | fvexi |  |-  W e. _V | 
						
							| 24 | 23 | a1i |  |-  ( ph -> W e. _V ) | 
						
							| 25 |  | coeq2 |  |-  ( g = h -> ( T o. g ) = ( T o. h ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( g = h -> ( H gsum ( T o. g ) ) = ( H gsum ( T o. h ) ) ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 | frgpuplem |  |-  ( ( ph /\ g .~ h ) -> ( H gsum ( T o. g ) ) = ( H gsum ( T o. h ) ) ) | 
						
							| 28 | 11 20 22 24 26 27 | qliftfund |  |-  ( ph -> Fun E ) | 
						
							| 29 | 11 20 22 24 | qliftf |  |-  ( ph -> ( Fun E <-> E : ( W /. .~ ) --> B ) ) | 
						
							| 30 | 28 29 | mpbid |  |-  ( ph -> E : ( W /. .~ ) --> B ) | 
						
							| 31 |  | eqid |  |-  ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) | 
						
							| 32 | 9 31 8 | frgpval |  |-  ( I e. V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) | 
						
							| 33 | 5 32 | syl |  |-  ( ph -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) | 
						
							| 34 |  | 2on |  |-  2o e. On | 
						
							| 35 |  | xpexg |  |-  ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) | 
						
							| 36 | 5 34 35 | sylancl |  |-  ( ph -> ( I X. 2o ) e. _V ) | 
						
							| 37 |  | wrdexg |  |-  ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) | 
						
							| 38 |  | fvi |  |-  ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) | 
						
							| 39 | 36 37 38 | 3syl |  |-  ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) | 
						
							| 40 | 7 39 | eqtrid |  |-  ( ph -> W = Word ( I X. 2o ) ) | 
						
							| 41 |  | eqid |  |-  ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) | 
						
							| 42 | 31 41 | frmdbas |  |-  ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) | 
						
							| 43 | 36 42 | syl |  |-  ( ph -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) | 
						
							| 44 | 40 43 | eqtr4d |  |-  ( ph -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) | 
						
							| 45 | 8 | fvexi |  |-  .~ e. _V | 
						
							| 46 | 45 | a1i |  |-  ( ph -> .~ e. _V ) | 
						
							| 47 |  | fvexd |  |-  ( ph -> ( freeMnd ` ( I X. 2o ) ) e. _V ) | 
						
							| 48 | 33 44 46 47 | qusbas |  |-  ( ph -> ( W /. .~ ) = ( Base ` G ) ) | 
						
							| 49 | 10 48 | eqtr4id |  |-  ( ph -> X = ( W /. .~ ) ) | 
						
							| 50 | 49 | feq2d |  |-  ( ph -> ( E : X --> B <-> E : ( W /. .~ ) --> B ) ) | 
						
							| 51 | 30 50 | mpbird |  |-  ( ph -> E : X --> B ) |