| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpup.b |  |-  B = ( Base ` H ) | 
						
							| 2 |  | frgpup.n |  |-  N = ( invg ` H ) | 
						
							| 3 |  | frgpup.t |  |-  T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) | 
						
							| 4 |  | frgpup.h |  |-  ( ph -> H e. Grp ) | 
						
							| 5 |  | frgpup.i |  |-  ( ph -> I e. V ) | 
						
							| 6 |  | frgpup.a |  |-  ( ph -> F : I --> B ) | 
						
							| 7 |  | frgpup.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 8 |  | frgpup.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 9 | 7 8 | efgval |  |-  .~ = |^| { r | ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x r ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } | 
						
							| 10 |  | coeq2 |  |-  ( u = v -> ( T o. u ) = ( T o. v ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( u = v -> ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) | 
						
							| 12 |  | eqid |  |-  { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } = { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } | 
						
							| 13 | 11 12 | eqer |  |-  { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } Er _V | 
						
							| 14 | 13 | a1i |  |-  ( ph -> { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } Er _V ) | 
						
							| 15 |  | ssv |  |-  W C_ _V | 
						
							| 16 | 15 | a1i |  |-  ( ph -> W C_ _V ) | 
						
							| 17 | 14 16 | erinxp |  |-  ( ph -> ( { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } i^i ( W X. W ) ) Er W ) | 
						
							| 18 |  | df-xp |  |-  ( W X. W ) = { <. u , v >. | ( u e. W /\ v e. W ) } | 
						
							| 19 | 18 | ineq1i |  |-  ( ( W X. W ) i^i { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } ) = ( { <. u , v >. | ( u e. W /\ v e. W ) } i^i { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } ) | 
						
							| 20 |  | incom |  |-  ( ( W X. W ) i^i { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } ) = ( { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } i^i ( W X. W ) ) | 
						
							| 21 |  | inopab |  |-  ( { <. u , v >. | ( u e. W /\ v e. W ) } i^i { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } ) = { <. u , v >. | ( ( u e. W /\ v e. W ) /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } | 
						
							| 22 | 19 20 21 | 3eqtr3i |  |-  ( { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } i^i ( W X. W ) ) = { <. u , v >. | ( ( u e. W /\ v e. W ) /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } | 
						
							| 23 |  | vex |  |-  u e. _V | 
						
							| 24 |  | vex |  |-  v e. _V | 
						
							| 25 | 23 24 | prss |  |-  ( ( u e. W /\ v e. W ) <-> { u , v } C_ W ) | 
						
							| 26 | 25 | anbi1i |  |-  ( ( ( u e. W /\ v e. W ) /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) <-> ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) ) | 
						
							| 27 | 26 | opabbii |  |-  { <. u , v >. | ( ( u e. W /\ v e. W ) /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } = { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } | 
						
							| 28 | 22 27 | eqtri |  |-  ( { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } i^i ( W X. W ) ) = { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } | 
						
							| 29 |  | ereq1 |  |-  ( ( { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } i^i ( W X. W ) ) = { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } -> ( ( { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } i^i ( W X. W ) ) Er W <-> { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } Er W ) ) | 
						
							| 30 | 28 29 | ax-mp |  |-  ( ( { <. u , v >. | ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) } i^i ( W X. W ) ) Er W <-> { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } Er W ) | 
						
							| 31 | 17 30 | sylib |  |-  ( ph -> { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } Er W ) | 
						
							| 32 |  | simplrl |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> x e. W ) | 
						
							| 33 |  | fviss |  |-  ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) | 
						
							| 34 | 7 33 | eqsstri |  |-  W C_ Word ( I X. 2o ) | 
						
							| 35 | 34 32 | sselid |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> x e. Word ( I X. 2o ) ) | 
						
							| 36 |  | opelxpi |  |-  ( ( a e. I /\ b e. 2o ) -> <. a , b >. e. ( I X. 2o ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> <. a , b >. e. ( I X. 2o ) ) | 
						
							| 38 |  | simprl |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> a e. I ) | 
						
							| 39 |  | 2oconcl |  |-  ( b e. 2o -> ( 1o \ b ) e. 2o ) | 
						
							| 40 | 39 | ad2antll |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( 1o \ b ) e. 2o ) | 
						
							| 41 | 38 40 | opelxpd |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> <. a , ( 1o \ b ) >. e. ( I X. 2o ) ) | 
						
							| 42 | 37 41 | s2cld |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> <" <. a , b >. <. a , ( 1o \ b ) >. "> e. Word ( I X. 2o ) ) | 
						
							| 43 |  | splcl |  |-  ( ( x e. Word ( I X. 2o ) /\ <" <. a , b >. <. a , ( 1o \ b ) >. "> e. Word ( I X. 2o ) ) -> ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) e. Word ( I X. 2o ) ) | 
						
							| 44 | 35 42 43 | syl2anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) e. Word ( I X. 2o ) ) | 
						
							| 45 | 7 | efgrcl |  |-  ( x e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) | 
						
							| 46 | 32 45 | syl |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) | 
						
							| 47 | 46 | simprd |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> W = Word ( I X. 2o ) ) | 
						
							| 48 | 44 47 | eleqtrrd |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) e. W ) | 
						
							| 49 |  | pfxcl |  |-  ( x e. Word ( I X. 2o ) -> ( x prefix n ) e. Word ( I X. 2o ) ) | 
						
							| 50 | 35 49 | syl |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( x prefix n ) e. Word ( I X. 2o ) ) | 
						
							| 51 | 1 2 3 4 5 6 | frgpuptf |  |-  ( ph -> T : ( I X. 2o ) --> B ) | 
						
							| 52 | 51 | ad2antrr |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> T : ( I X. 2o ) --> B ) | 
						
							| 53 |  | ccatco |  |-  ( ( ( x prefix n ) e. Word ( I X. 2o ) /\ <" <. a , b >. <. a , ( 1o \ b ) >. "> e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) = ( ( T o. ( x prefix n ) ) ++ ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) | 
						
							| 54 | 50 42 52 53 | syl3anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) = ( ( T o. ( x prefix n ) ) ++ ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) | 
						
							| 55 | 54 | oveq2d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) = ( H gsum ( ( T o. ( x prefix n ) ) ++ ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) ) | 
						
							| 56 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> H e. Grp ) | 
						
							| 57 | 56 | grpmndd |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> H e. Mnd ) | 
						
							| 58 |  | wrdco |  |-  ( ( ( x prefix n ) e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. ( x prefix n ) ) e. Word B ) | 
						
							| 59 | 50 52 58 | syl2anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. ( x prefix n ) ) e. Word B ) | 
						
							| 60 |  | wrdco |  |-  ( ( <" <. a , b >. <. a , ( 1o \ b ) >. "> e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) e. Word B ) | 
						
							| 61 | 42 52 60 | syl2anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) e. Word B ) | 
						
							| 62 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 63 | 1 62 | gsumccat |  |-  ( ( H e. Mnd /\ ( T o. ( x prefix n ) ) e. Word B /\ ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) e. Word B ) -> ( H gsum ( ( T o. ( x prefix n ) ) ++ ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) = ( ( H gsum ( T o. ( x prefix n ) ) ) ( +g ` H ) ( H gsum ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) ) | 
						
							| 64 | 57 59 61 63 | syl3anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( ( T o. ( x prefix n ) ) ++ ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) = ( ( H gsum ( T o. ( x prefix n ) ) ) ( +g ` H ) ( H gsum ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) ) | 
						
							| 65 | 52 37 41 | s2co |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) = <" ( T ` <. a , b >. ) ( T ` <. a , ( 1o \ b ) >. ) "> ) | 
						
							| 66 |  | df-ov |  |-  ( a T b ) = ( T ` <. a , b >. ) | 
						
							| 67 | 66 | a1i |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( a T b ) = ( T ` <. a , b >. ) ) | 
						
							| 68 | 66 | fveq2i |  |-  ( N ` ( a T b ) ) = ( N ` ( T ` <. a , b >. ) ) | 
						
							| 69 |  | df-ov |  |-  ( a ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) b ) = ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` <. a , b >. ) | 
						
							| 70 |  | eqid |  |-  ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 71 | 70 | efgmval |  |-  ( ( a e. I /\ b e. 2o ) -> ( a ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) b ) = <. a , ( 1o \ b ) >. ) | 
						
							| 72 | 69 71 | eqtr3id |  |-  ( ( a e. I /\ b e. 2o ) -> ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` <. a , b >. ) = <. a , ( 1o \ b ) >. ) | 
						
							| 73 | 72 | adantl |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` <. a , b >. ) = <. a , ( 1o \ b ) >. ) | 
						
							| 74 | 73 | fveq2d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` <. a , b >. ) ) = ( T ` <. a , ( 1o \ b ) >. ) ) | 
						
							| 75 | 1 2 3 4 5 6 70 | frgpuptinv |  |-  ( ( ph /\ <. a , b >. e. ( I X. 2o ) ) -> ( T ` ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` <. a , b >. ) ) = ( N ` ( T ` <. a , b >. ) ) ) | 
						
							| 76 | 36 75 | sylan2 |  |-  ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` <. a , b >. ) ) = ( N ` ( T ` <. a , b >. ) ) ) | 
						
							| 77 | 76 | adantlr |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` <. a , b >. ) ) = ( N ` ( T ` <. a , b >. ) ) ) | 
						
							| 78 | 74 77 | eqtr3d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T ` <. a , ( 1o \ b ) >. ) = ( N ` ( T ` <. a , b >. ) ) ) | 
						
							| 79 | 68 78 | eqtr4id |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( N ` ( a T b ) ) = ( T ` <. a , ( 1o \ b ) >. ) ) | 
						
							| 80 | 67 79 | s2eqd |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> <" ( a T b ) ( N ` ( a T b ) ) "> = <" ( T ` <. a , b >. ) ( T ` <. a , ( 1o \ b ) >. ) "> ) | 
						
							| 81 | 65 80 | eqtr4d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) = <" ( a T b ) ( N ` ( a T b ) ) "> ) | 
						
							| 82 | 81 | oveq2d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) = ( H gsum <" ( a T b ) ( N ` ( a T b ) ) "> ) ) | 
						
							| 83 |  | simprr |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> b e. 2o ) | 
						
							| 84 | 52 38 83 | fovcdmd |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( a T b ) e. B ) | 
						
							| 85 | 1 2 | grpinvcl |  |-  ( ( H e. Grp /\ ( a T b ) e. B ) -> ( N ` ( a T b ) ) e. B ) | 
						
							| 86 | 56 84 85 | syl2anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( N ` ( a T b ) ) e. B ) | 
						
							| 87 | 1 62 | gsumws2 |  |-  ( ( H e. Mnd /\ ( a T b ) e. B /\ ( N ` ( a T b ) ) e. B ) -> ( H gsum <" ( a T b ) ( N ` ( a T b ) ) "> ) = ( ( a T b ) ( +g ` H ) ( N ` ( a T b ) ) ) ) | 
						
							| 88 | 57 84 86 87 | syl3anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum <" ( a T b ) ( N ` ( a T b ) ) "> ) = ( ( a T b ) ( +g ` H ) ( N ` ( a T b ) ) ) ) | 
						
							| 89 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 90 | 1 62 89 2 | grprinv |  |-  ( ( H e. Grp /\ ( a T b ) e. B ) -> ( ( a T b ) ( +g ` H ) ( N ` ( a T b ) ) ) = ( 0g ` H ) ) | 
						
							| 91 | 56 84 90 | syl2anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( ( a T b ) ( +g ` H ) ( N ` ( a T b ) ) ) = ( 0g ` H ) ) | 
						
							| 92 | 82 88 91 | 3eqtrd |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) = ( 0g ` H ) ) | 
						
							| 93 | 92 | oveq2d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( ( H gsum ( T o. ( x prefix n ) ) ) ( +g ` H ) ( H gsum ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) = ( ( H gsum ( T o. ( x prefix n ) ) ) ( +g ` H ) ( 0g ` H ) ) ) | 
						
							| 94 | 1 | gsumwcl |  |-  ( ( H e. Mnd /\ ( T o. ( x prefix n ) ) e. Word B ) -> ( H gsum ( T o. ( x prefix n ) ) ) e. B ) | 
						
							| 95 | 57 59 94 | syl2anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( T o. ( x prefix n ) ) ) e. B ) | 
						
							| 96 | 1 62 89 | grprid |  |-  ( ( H e. Grp /\ ( H gsum ( T o. ( x prefix n ) ) ) e. B ) -> ( ( H gsum ( T o. ( x prefix n ) ) ) ( +g ` H ) ( 0g ` H ) ) = ( H gsum ( T o. ( x prefix n ) ) ) ) | 
						
							| 97 | 56 95 96 | syl2anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( ( H gsum ( T o. ( x prefix n ) ) ) ( +g ` H ) ( 0g ` H ) ) = ( H gsum ( T o. ( x prefix n ) ) ) ) | 
						
							| 98 | 93 97 | eqtrd |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( ( H gsum ( T o. ( x prefix n ) ) ) ( +g ` H ) ( H gsum ( T o. <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) = ( H gsum ( T o. ( x prefix n ) ) ) ) | 
						
							| 99 | 55 64 98 | 3eqtrrd |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( T o. ( x prefix n ) ) ) = ( H gsum ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) ) | 
						
							| 100 | 99 | oveq1d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( ( H gsum ( T o. ( x prefix n ) ) ) ( +g ` H ) ( H gsum ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) = ( ( H gsum ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) ( +g ` H ) ( H gsum ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) ) | 
						
							| 101 |  | swrdcl |  |-  ( x e. Word ( I X. 2o ) -> ( x substr <. n , ( # ` x ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 102 | 35 101 | syl |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( x substr <. n , ( # ` x ) >. ) e. Word ( I X. 2o ) ) | 
						
							| 103 |  | wrdco |  |-  ( ( ( x substr <. n , ( # ` x ) >. ) e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. ( x substr <. n , ( # ` x ) >. ) ) e. Word B ) | 
						
							| 104 | 102 52 103 | syl2anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. ( x substr <. n , ( # ` x ) >. ) ) e. Word B ) | 
						
							| 105 | 1 62 | gsumccat |  |-  ( ( H e. Mnd /\ ( T o. ( x prefix n ) ) e. Word B /\ ( T o. ( x substr <. n , ( # ` x ) >. ) ) e. Word B ) -> ( H gsum ( ( T o. ( x prefix n ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) = ( ( H gsum ( T o. ( x prefix n ) ) ) ( +g ` H ) ( H gsum ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) ) | 
						
							| 106 | 57 59 104 105 | syl3anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( ( T o. ( x prefix n ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) = ( ( H gsum ( T o. ( x prefix n ) ) ) ( +g ` H ) ( H gsum ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) ) | 
						
							| 107 |  | ccatcl |  |-  ( ( ( x prefix n ) e. Word ( I X. 2o ) /\ <" <. a , b >. <. a , ( 1o \ b ) >. "> e. Word ( I X. 2o ) ) -> ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) e. Word ( I X. 2o ) ) | 
						
							| 108 | 50 42 107 | syl2anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) e. Word ( I X. 2o ) ) | 
						
							| 109 |  | wrdco |  |-  ( ( ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) e. Word B ) | 
						
							| 110 | 108 52 109 | syl2anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) e. Word B ) | 
						
							| 111 | 1 62 | gsumccat |  |-  ( ( H e. Mnd /\ ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) e. Word B /\ ( T o. ( x substr <. n , ( # ` x ) >. ) ) e. Word B ) -> ( H gsum ( ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) = ( ( H gsum ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) ( +g ` H ) ( H gsum ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) ) | 
						
							| 112 | 57 110 104 111 | syl3anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) = ( ( H gsum ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ) ( +g ` H ) ( H gsum ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) ) | 
						
							| 113 | 100 106 112 | 3eqtr4d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( ( T o. ( x prefix n ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) = ( H gsum ( ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) ) | 
						
							| 114 |  | simplrr |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> n e. ( 0 ... ( # ` x ) ) ) | 
						
							| 115 |  | lencl |  |-  ( x e. Word ( I X. 2o ) -> ( # ` x ) e. NN0 ) | 
						
							| 116 | 35 115 | syl |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( # ` x ) e. NN0 ) | 
						
							| 117 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 118 | 116 117 | eleqtrdi |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( # ` x ) e. ( ZZ>= ` 0 ) ) | 
						
							| 119 |  | eluzfz2 |  |-  ( ( # ` x ) e. ( ZZ>= ` 0 ) -> ( # ` x ) e. ( 0 ... ( # ` x ) ) ) | 
						
							| 120 | 118 119 | syl |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( # ` x ) e. ( 0 ... ( # ` x ) ) ) | 
						
							| 121 |  | ccatpfx |  |-  ( ( x e. Word ( I X. 2o ) /\ n e. ( 0 ... ( # ` x ) ) /\ ( # ` x ) e. ( 0 ... ( # ` x ) ) ) -> ( ( x prefix n ) ++ ( x substr <. n , ( # ` x ) >. ) ) = ( x prefix ( # ` x ) ) ) | 
						
							| 122 | 35 114 120 121 | syl3anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( ( x prefix n ) ++ ( x substr <. n , ( # ` x ) >. ) ) = ( x prefix ( # ` x ) ) ) | 
						
							| 123 |  | pfxid |  |-  ( x e. Word ( I X. 2o ) -> ( x prefix ( # ` x ) ) = x ) | 
						
							| 124 | 35 123 | syl |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( x prefix ( # ` x ) ) = x ) | 
						
							| 125 | 122 124 | eqtrd |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( ( x prefix n ) ++ ( x substr <. n , ( # ` x ) >. ) ) = x ) | 
						
							| 126 | 125 | coeq2d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. ( ( x prefix n ) ++ ( x substr <. n , ( # ` x ) >. ) ) ) = ( T o. x ) ) | 
						
							| 127 |  | ccatco |  |-  ( ( ( x prefix n ) e. Word ( I X. 2o ) /\ ( x substr <. n , ( # ` x ) >. ) e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. ( ( x prefix n ) ++ ( x substr <. n , ( # ` x ) >. ) ) ) = ( ( T o. ( x prefix n ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) | 
						
							| 128 | 50 102 52 127 | syl3anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. ( ( x prefix n ) ++ ( x substr <. n , ( # ` x ) >. ) ) ) = ( ( T o. ( x prefix n ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) | 
						
							| 129 | 126 128 | eqtr3d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. x ) = ( ( T o. ( x prefix n ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) | 
						
							| 130 | 129 | oveq2d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( T o. x ) ) = ( H gsum ( ( T o. ( x prefix n ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) ) | 
						
							| 131 |  | splval |  |-  ( ( x e. W /\ ( n e. ( 0 ... ( # ` x ) ) /\ n e. ( 0 ... ( # ` x ) ) /\ <" <. a , b >. <. a , ( 1o \ b ) >. "> e. Word ( I X. 2o ) ) ) -> ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) = ( ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ++ ( x substr <. n , ( # ` x ) >. ) ) ) | 
						
							| 132 | 32 114 114 42 131 | syl13anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) = ( ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ++ ( x substr <. n , ( # ` x ) >. ) ) ) | 
						
							| 133 | 132 | coeq2d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) = ( T o. ( ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ++ ( x substr <. n , ( # ` x ) >. ) ) ) ) | 
						
							| 134 |  | ccatco |  |-  ( ( ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) e. Word ( I X. 2o ) /\ ( x substr <. n , ( # ` x ) >. ) e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. ( ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ++ ( x substr <. n , ( # ` x ) >. ) ) ) = ( ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) | 
						
							| 135 | 108 102 52 134 | syl3anc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. ( ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ++ ( x substr <. n , ( # ` x ) >. ) ) ) = ( ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) | 
						
							| 136 | 133 135 | eqtrd |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( T o. ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) = ( ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) | 
						
							| 137 | 136 | oveq2d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( T o. ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) = ( H gsum ( ( T o. ( ( x prefix n ) ++ <" <. a , b >. <. a , ( 1o \ b ) >. "> ) ) ++ ( T o. ( x substr <. n , ( # ` x ) >. ) ) ) ) ) | 
						
							| 138 | 113 130 137 | 3eqtr4d |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> ( H gsum ( T o. x ) ) = ( H gsum ( T o. ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) ) | 
						
							| 139 |  | vex |  |-  x e. _V | 
						
							| 140 |  | ovex |  |-  ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) e. _V | 
						
							| 141 |  | eleq1 |  |-  ( u = x -> ( u e. W <-> x e. W ) ) | 
						
							| 142 |  | eleq1 |  |-  ( v = ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> ( v e. W <-> ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) e. W ) ) | 
						
							| 143 | 141 142 | bi2anan9 |  |-  ( ( u = x /\ v = ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) -> ( ( u e. W /\ v e. W ) <-> ( x e. W /\ ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) e. W ) ) ) | 
						
							| 144 | 25 143 | bitr3id |  |-  ( ( u = x /\ v = ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) -> ( { u , v } C_ W <-> ( x e. W /\ ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) e. W ) ) ) | 
						
							| 145 |  | coeq2 |  |-  ( u = x -> ( T o. u ) = ( T o. x ) ) | 
						
							| 146 | 145 | oveq2d |  |-  ( u = x -> ( H gsum ( T o. u ) ) = ( H gsum ( T o. x ) ) ) | 
						
							| 147 |  | coeq2 |  |-  ( v = ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> ( T o. v ) = ( T o. ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 148 | 147 | oveq2d |  |-  ( v = ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) -> ( H gsum ( T o. v ) ) = ( H gsum ( T o. ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) ) | 
						
							| 149 | 146 148 | eqeqan12d |  |-  ( ( u = x /\ v = ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) -> ( ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) <-> ( H gsum ( T o. x ) ) = ( H gsum ( T o. ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) ) ) | 
						
							| 150 | 144 149 | anbi12d |  |-  ( ( u = x /\ v = ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) -> ( ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) <-> ( ( x e. W /\ ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) e. W ) /\ ( H gsum ( T o. x ) ) = ( H gsum ( T o. ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) ) ) ) | 
						
							| 151 |  | eqid |  |-  { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } = { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } | 
						
							| 152 | 139 140 150 151 | braba |  |-  ( x { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> ( ( x e. W /\ ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) e. W ) /\ ( H gsum ( T o. x ) ) = ( H gsum ( T o. ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) ) ) | 
						
							| 153 | 32 48 138 152 | syl21anbrc |  |-  ( ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) /\ ( a e. I /\ b e. 2o ) ) -> x { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) | 
						
							| 154 | 153 | ralrimivva |  |-  ( ( ph /\ ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) ) -> A. a e. I A. b e. 2o x { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) | 
						
							| 155 | 154 | ralrimivva |  |-  ( ph -> A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) | 
						
							| 156 | 7 | fvexi |  |-  W e. _V | 
						
							| 157 |  | erex |  |-  ( { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } Er W -> ( W e. _V -> { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } e. _V ) ) | 
						
							| 158 | 31 156 157 | mpisyl |  |-  ( ph -> { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } e. _V ) | 
						
							| 159 |  | ereq1 |  |-  ( r = { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } -> ( r Er W <-> { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } Er W ) ) | 
						
							| 160 |  | breq |  |-  ( r = { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } -> ( x r ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> x { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 161 | 160 | 2ralbidv |  |-  ( r = { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } -> ( A. a e. I A. b e. 2o x r ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A. a e. I A. b e. 2o x { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 162 | 161 | 2ralbidv |  |-  ( r = { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } -> ( A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x r ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) <-> A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) | 
						
							| 163 | 159 162 | anbi12d |  |-  ( r = { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } -> ( ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x r ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) <-> ( { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) ) | 
						
							| 164 | 163 | elabg |  |-  ( { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } e. _V -> ( { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } e. { r | ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x r ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } <-> ( { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) ) | 
						
							| 165 | 158 164 | syl |  |-  ( ph -> ( { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } e. { r | ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x r ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } <-> ( { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) ) ) | 
						
							| 166 | 31 155 165 | mpbir2and |  |-  ( ph -> { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } e. { r | ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x r ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } ) | 
						
							| 167 |  | intss1 |  |-  ( { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } e. { r | ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x r ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } -> |^| { r | ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x r ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } C_ { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ) | 
						
							| 168 | 166 167 | syl |  |-  ( ph -> |^| { r | ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. a e. I A. b e. 2o x r ( x splice <. n , n , <" <. a , b >. <. a , ( 1o \ b ) >. "> >. ) ) } C_ { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ) | 
						
							| 169 | 9 168 | eqsstrid |  |-  ( ph -> .~ C_ { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } ) | 
						
							| 170 | 169 | ssbrd |  |-  ( ph -> ( A .~ C -> A { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } C ) ) | 
						
							| 171 | 170 | imp |  |-  ( ( ph /\ A .~ C ) -> A { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } C ) | 
						
							| 172 | 7 8 | efger |  |-  .~ Er W | 
						
							| 173 |  | errel |  |-  ( .~ Er W -> Rel .~ ) | 
						
							| 174 | 172 173 | mp1i |  |-  ( ph -> Rel .~ ) | 
						
							| 175 |  | brrelex12 |  |-  ( ( Rel .~ /\ A .~ C ) -> ( A e. _V /\ C e. _V ) ) | 
						
							| 176 | 174 175 | sylan |  |-  ( ( ph /\ A .~ C ) -> ( A e. _V /\ C e. _V ) ) | 
						
							| 177 |  | preq12 |  |-  ( ( u = A /\ v = C ) -> { u , v } = { A , C } ) | 
						
							| 178 | 177 | sseq1d |  |-  ( ( u = A /\ v = C ) -> ( { u , v } C_ W <-> { A , C } C_ W ) ) | 
						
							| 179 |  | coeq2 |  |-  ( u = A -> ( T o. u ) = ( T o. A ) ) | 
						
							| 180 | 179 | oveq2d |  |-  ( u = A -> ( H gsum ( T o. u ) ) = ( H gsum ( T o. A ) ) ) | 
						
							| 181 |  | coeq2 |  |-  ( v = C -> ( T o. v ) = ( T o. C ) ) | 
						
							| 182 | 181 | oveq2d |  |-  ( v = C -> ( H gsum ( T o. v ) ) = ( H gsum ( T o. C ) ) ) | 
						
							| 183 | 180 182 | eqeqan12d |  |-  ( ( u = A /\ v = C ) -> ( ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) <-> ( H gsum ( T o. A ) ) = ( H gsum ( T o. C ) ) ) ) | 
						
							| 184 | 178 183 | anbi12d |  |-  ( ( u = A /\ v = C ) -> ( ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) <-> ( { A , C } C_ W /\ ( H gsum ( T o. A ) ) = ( H gsum ( T o. C ) ) ) ) ) | 
						
							| 185 | 184 151 | brabga |  |-  ( ( A e. _V /\ C e. _V ) -> ( A { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } C <-> ( { A , C } C_ W /\ ( H gsum ( T o. A ) ) = ( H gsum ( T o. C ) ) ) ) ) | 
						
							| 186 | 176 185 | syl |  |-  ( ( ph /\ A .~ C ) -> ( A { <. u , v >. | ( { u , v } C_ W /\ ( H gsum ( T o. u ) ) = ( H gsum ( T o. v ) ) ) } C <-> ( { A , C } C_ W /\ ( H gsum ( T o. A ) ) = ( H gsum ( T o. C ) ) ) ) ) | 
						
							| 187 | 171 186 | mpbid |  |-  ( ( ph /\ A .~ C ) -> ( { A , C } C_ W /\ ( H gsum ( T o. A ) ) = ( H gsum ( T o. C ) ) ) ) | 
						
							| 188 | 187 | simprd |  |-  ( ( ph /\ A .~ C ) -> ( H gsum ( T o. A ) ) = ( H gsum ( T o. C ) ) ) |