| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpup.b |  |-  B = ( Base ` H ) | 
						
							| 2 |  | frgpup.n |  |-  N = ( invg ` H ) | 
						
							| 3 |  | frgpup.t |  |-  T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) | 
						
							| 4 |  | frgpup.h |  |-  ( ph -> H e. Grp ) | 
						
							| 5 |  | frgpup.i |  |-  ( ph -> I e. V ) | 
						
							| 6 |  | frgpup.a |  |-  ( ph -> F : I --> B ) | 
						
							| 7 |  | frgpuptinv.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 8 |  | elxp2 |  |-  ( A e. ( I X. 2o ) <-> E. a e. I E. b e. 2o A = <. a , b >. ) | 
						
							| 9 | 7 | efgmval |  |-  ( ( a e. I /\ b e. 2o ) -> ( a M b ) = <. a , ( 1o \ b ) >. ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( a M b ) = <. a , ( 1o \ b ) >. ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( a M b ) ) = ( T ` <. a , ( 1o \ b ) >. ) ) | 
						
							| 12 |  | df-ov |  |-  ( a T ( 1o \ b ) ) = ( T ` <. a , ( 1o \ b ) >. ) | 
						
							| 13 | 11 12 | eqtr4di |  |-  ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( a M b ) ) = ( a T ( 1o \ b ) ) ) | 
						
							| 14 |  | elpri |  |-  ( b e. { (/) , 1o } -> ( b = (/) \/ b = 1o ) ) | 
						
							| 15 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 16 | 14 15 | eleq2s |  |-  ( b e. 2o -> ( b = (/) \/ b = 1o ) ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ a e. I ) -> a e. I ) | 
						
							| 18 |  | 1oex |  |-  1o e. _V | 
						
							| 19 | 18 | prid2 |  |-  1o e. { (/) , 1o } | 
						
							| 20 | 19 15 | eleqtrri |  |-  1o e. 2o | 
						
							| 21 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 22 |  | neeq1 |  |-  ( z = 1o -> ( z =/= (/) <-> 1o =/= (/) ) ) | 
						
							| 23 | 21 22 | mpbiri |  |-  ( z = 1o -> z =/= (/) ) | 
						
							| 24 |  | ifnefalse |  |-  ( z =/= (/) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( N ` ( F ` y ) ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( z = 1o -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( N ` ( F ` y ) ) ) | 
						
							| 26 |  | fveq2 |  |-  ( y = a -> ( F ` y ) = ( F ` a ) ) | 
						
							| 27 | 26 | fveq2d |  |-  ( y = a -> ( N ` ( F ` y ) ) = ( N ` ( F ` a ) ) ) | 
						
							| 28 | 25 27 | sylan9eqr |  |-  ( ( y = a /\ z = 1o ) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( N ` ( F ` a ) ) ) | 
						
							| 29 |  | fvex |  |-  ( N ` ( F ` a ) ) e. _V | 
						
							| 30 | 28 3 29 | ovmpoa |  |-  ( ( a e. I /\ 1o e. 2o ) -> ( a T 1o ) = ( N ` ( F ` a ) ) ) | 
						
							| 31 | 17 20 30 | sylancl |  |-  ( ( ph /\ a e. I ) -> ( a T 1o ) = ( N ` ( F ` a ) ) ) | 
						
							| 32 |  | 0ex |  |-  (/) e. _V | 
						
							| 33 | 32 | prid1 |  |-  (/) e. { (/) , 1o } | 
						
							| 34 | 33 15 | eleqtrri |  |-  (/) e. 2o | 
						
							| 35 |  | iftrue |  |-  ( z = (/) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( F ` y ) ) | 
						
							| 36 | 35 26 | sylan9eqr |  |-  ( ( y = a /\ z = (/) ) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( F ` a ) ) | 
						
							| 37 |  | fvex |  |-  ( F ` a ) e. _V | 
						
							| 38 | 36 3 37 | ovmpoa |  |-  ( ( a e. I /\ (/) e. 2o ) -> ( a T (/) ) = ( F ` a ) ) | 
						
							| 39 | 17 34 38 | sylancl |  |-  ( ( ph /\ a e. I ) -> ( a T (/) ) = ( F ` a ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( ph /\ a e. I ) -> ( N ` ( a T (/) ) ) = ( N ` ( F ` a ) ) ) | 
						
							| 41 | 31 40 | eqtr4d |  |-  ( ( ph /\ a e. I ) -> ( a T 1o ) = ( N ` ( a T (/) ) ) ) | 
						
							| 42 |  | difeq2 |  |-  ( b = (/) -> ( 1o \ b ) = ( 1o \ (/) ) ) | 
						
							| 43 |  | dif0 |  |-  ( 1o \ (/) ) = 1o | 
						
							| 44 | 42 43 | eqtrdi |  |-  ( b = (/) -> ( 1o \ b ) = 1o ) | 
						
							| 45 | 44 | oveq2d |  |-  ( b = (/) -> ( a T ( 1o \ b ) ) = ( a T 1o ) ) | 
						
							| 46 |  | oveq2 |  |-  ( b = (/) -> ( a T b ) = ( a T (/) ) ) | 
						
							| 47 | 46 | fveq2d |  |-  ( b = (/) -> ( N ` ( a T b ) ) = ( N ` ( a T (/) ) ) ) | 
						
							| 48 | 45 47 | eqeq12d |  |-  ( b = (/) -> ( ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) <-> ( a T 1o ) = ( N ` ( a T (/) ) ) ) ) | 
						
							| 49 | 41 48 | syl5ibrcom |  |-  ( ( ph /\ a e. I ) -> ( b = (/) -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) | 
						
							| 50 | 41 | fveq2d |  |-  ( ( ph /\ a e. I ) -> ( N ` ( a T 1o ) ) = ( N ` ( N ` ( a T (/) ) ) ) ) | 
						
							| 51 | 6 | ffvelcdmda |  |-  ( ( ph /\ a e. I ) -> ( F ` a ) e. B ) | 
						
							| 52 | 39 51 | eqeltrd |  |-  ( ( ph /\ a e. I ) -> ( a T (/) ) e. B ) | 
						
							| 53 | 1 2 | grpinvinv |  |-  ( ( H e. Grp /\ ( a T (/) ) e. B ) -> ( N ` ( N ` ( a T (/) ) ) ) = ( a T (/) ) ) | 
						
							| 54 | 4 52 53 | syl2an2r |  |-  ( ( ph /\ a e. I ) -> ( N ` ( N ` ( a T (/) ) ) ) = ( a T (/) ) ) | 
						
							| 55 | 50 54 | eqtr2d |  |-  ( ( ph /\ a e. I ) -> ( a T (/) ) = ( N ` ( a T 1o ) ) ) | 
						
							| 56 |  | difeq2 |  |-  ( b = 1o -> ( 1o \ b ) = ( 1o \ 1o ) ) | 
						
							| 57 |  | difid |  |-  ( 1o \ 1o ) = (/) | 
						
							| 58 | 56 57 | eqtrdi |  |-  ( b = 1o -> ( 1o \ b ) = (/) ) | 
						
							| 59 | 58 | oveq2d |  |-  ( b = 1o -> ( a T ( 1o \ b ) ) = ( a T (/) ) ) | 
						
							| 60 |  | oveq2 |  |-  ( b = 1o -> ( a T b ) = ( a T 1o ) ) | 
						
							| 61 | 60 | fveq2d |  |-  ( b = 1o -> ( N ` ( a T b ) ) = ( N ` ( a T 1o ) ) ) | 
						
							| 62 | 59 61 | eqeq12d |  |-  ( b = 1o -> ( ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) <-> ( a T (/) ) = ( N ` ( a T 1o ) ) ) ) | 
						
							| 63 | 55 62 | syl5ibrcom |  |-  ( ( ph /\ a e. I ) -> ( b = 1o -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) | 
						
							| 64 | 49 63 | jaod |  |-  ( ( ph /\ a e. I ) -> ( ( b = (/) \/ b = 1o ) -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) | 
						
							| 65 | 16 64 | syl5 |  |-  ( ( ph /\ a e. I ) -> ( b e. 2o -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) | 
						
							| 66 | 65 | impr |  |-  ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) | 
						
							| 67 | 13 66 | eqtrd |  |-  ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( a M b ) ) = ( N ` ( a T b ) ) ) | 
						
							| 68 |  | fveq2 |  |-  ( A = <. a , b >. -> ( M ` A ) = ( M ` <. a , b >. ) ) | 
						
							| 69 |  | df-ov |  |-  ( a M b ) = ( M ` <. a , b >. ) | 
						
							| 70 | 68 69 | eqtr4di |  |-  ( A = <. a , b >. -> ( M ` A ) = ( a M b ) ) | 
						
							| 71 | 70 | fveq2d |  |-  ( A = <. a , b >. -> ( T ` ( M ` A ) ) = ( T ` ( a M b ) ) ) | 
						
							| 72 |  | fveq2 |  |-  ( A = <. a , b >. -> ( T ` A ) = ( T ` <. a , b >. ) ) | 
						
							| 73 |  | df-ov |  |-  ( a T b ) = ( T ` <. a , b >. ) | 
						
							| 74 | 72 73 | eqtr4di |  |-  ( A = <. a , b >. -> ( T ` A ) = ( a T b ) ) | 
						
							| 75 | 74 | fveq2d |  |-  ( A = <. a , b >. -> ( N ` ( T ` A ) ) = ( N ` ( a T b ) ) ) | 
						
							| 76 | 71 75 | eqeq12d |  |-  ( A = <. a , b >. -> ( ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) <-> ( T ` ( a M b ) ) = ( N ` ( a T b ) ) ) ) | 
						
							| 77 | 67 76 | syl5ibrcom |  |-  ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( A = <. a , b >. -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) ) | 
						
							| 78 | 77 | rexlimdvva |  |-  ( ph -> ( E. a e. I E. b e. 2o A = <. a , b >. -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) ) | 
						
							| 79 | 8 78 | biimtrid |  |-  ( ph -> ( A e. ( I X. 2o ) -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) ) | 
						
							| 80 | 79 | imp |  |-  ( ( ph /\ A e. ( I X. 2o ) ) -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) |