Metamath Proof Explorer


Theorem frgpval

Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses frgpval.m G=freeGrpI
frgpval.b M=freeMndI×2𝑜
frgpval.r ˙=~FGI
Assertion frgpval IVG=M/𝑠˙

Proof

Step Hyp Ref Expression
1 frgpval.m G=freeGrpI
2 frgpval.b M=freeMndI×2𝑜
3 frgpval.r ˙=~FGI
4 elex IVIV
5 xpeq1 i=Ii×2𝑜=I×2𝑜
6 5 fveq2d i=IfreeMndi×2𝑜=freeMndI×2𝑜
7 6 2 eqtr4di i=IfreeMndi×2𝑜=M
8 fveq2 i=I~FGi=~FGI
9 8 3 eqtr4di i=I~FGi=˙
10 7 9 oveq12d i=IfreeMndi×2𝑜/𝑠~FGi=M/𝑠˙
11 df-frgp freeGrp=iVfreeMndi×2𝑜/𝑠~FGi
12 ovex M/𝑠˙V
13 10 11 12 fvmpt IVfreeGrpI=M/𝑠˙
14 4 13 syl IVfreeGrpI=M/𝑠˙
15 1 14 eqtrid IVG=M/𝑠˙