Metamath Proof Explorer


Theorem frgpuptf

Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses frgpup.b B=BaseH
frgpup.n N=invgH
frgpup.t T=yI,z2𝑜ifz=FyNFy
frgpup.h φHGrp
frgpup.i φIV
frgpup.a φF:IB
Assertion frgpuptf φT:I×2𝑜B

Proof

Step Hyp Ref Expression
1 frgpup.b B=BaseH
2 frgpup.n N=invgH
3 frgpup.t T=yI,z2𝑜ifz=FyNFy
4 frgpup.h φHGrp
5 frgpup.i φIV
6 frgpup.a φF:IB
7 6 ffvelcdmda φyIFyB
8 7 adantrr φyIz2𝑜FyB
9 1 2 grpinvcl HGrpFyBNFyB
10 4 8 9 syl2an2r φyIz2𝑜NFyB
11 8 10 ifcld φyIz2𝑜ifz=FyNFyB
12 11 ralrimivva φyIz2𝑜ifz=FyNFyB
13 3 fmpo yIz2𝑜ifz=FyNFyBT:I×2𝑜B
14 12 13 sylib φT:I×2𝑜B