| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpup.b | ⊢ 𝐵  =  ( Base ‘ 𝐻 ) | 
						
							| 2 |  | frgpup.n | ⊢ 𝑁  =  ( invg ‘ 𝐻 ) | 
						
							| 3 |  | frgpup.t | ⊢ 𝑇  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 4 |  | frgpup.h | ⊢ ( 𝜑  →  𝐻  ∈  Grp ) | 
						
							| 5 |  | frgpup.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | frgpup.a | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ 𝐵 ) | 
						
							| 7 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 8 | 7 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  2o ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 9 | 1 2 | grpinvcl | ⊢ ( ( 𝐻  ∈  Grp  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  𝐵 ) | 
						
							| 10 | 4 8 9 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  2o ) )  →  ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  𝐵 ) | 
						
							| 11 | 8 10 | ifcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐼  ∧  𝑧  ∈  2o ) )  →  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) )  ∈  𝐵 ) | 
						
							| 12 | 11 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐼 ∀ 𝑧  ∈  2o if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) )  ∈  𝐵 ) | 
						
							| 13 | 3 | fmpo | ⊢ ( ∀ 𝑦  ∈  𝐼 ∀ 𝑧  ∈  2o if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) )  ∈  𝐵  ↔  𝑇 : ( 𝐼  ×  2o ) ⟶ 𝐵 ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( 𝜑  →  𝑇 : ( 𝐼  ×  2o ) ⟶ 𝐵 ) |