| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpup.b | ⊢ 𝐵  =  ( Base ‘ 𝐻 ) | 
						
							| 2 |  | frgpup.n | ⊢ 𝑁  =  ( invg ‘ 𝐻 ) | 
						
							| 3 |  | frgpup.t | ⊢ 𝑇  =  ( 𝑦  ∈  𝐼 ,  𝑧  ∈  2o  ↦  if ( 𝑧  =  ∅ ,  ( 𝐹 ‘ 𝑦 ) ,  ( 𝑁 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 4 |  | frgpup.h | ⊢ ( 𝜑  →  𝐻  ∈  Grp ) | 
						
							| 5 |  | frgpup.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | frgpup.a | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ 𝐵 ) | 
						
							| 7 |  | frgpup.w | ⊢ 𝑊  =  (  I  ‘ Word  ( 𝐼  ×  2o ) ) | 
						
							| 8 |  | frgpup.r | ⊢  ∼   =  (  ~FG  ‘ 𝐼 ) | 
						
							| 9 |  | frgpup.g | ⊢ 𝐺  =  ( freeGrp ‘ 𝐼 ) | 
						
							| 10 |  | frgpup.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 11 |  | frgpup.e | ⊢ 𝐸  =  ran  ( 𝑔  ∈  𝑊  ↦  〈 [ 𝑔 ]  ∼  ,  ( 𝐻  Σg  ( 𝑇  ∘  𝑔 ) ) 〉 ) | 
						
							| 12 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 14 | 9 | frgpgrp | ⊢ ( 𝐼  ∈  𝑉  →  𝐺  ∈  Grp ) | 
						
							| 15 | 5 14 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupf | ⊢ ( 𝜑  →  𝐸 : 𝑋 ⟶ 𝐵 ) | 
						
							| 17 |  | eqid | ⊢ ( freeMnd ‘ ( 𝐼  ×  2o ) )  =  ( freeMnd ‘ ( 𝐼  ×  2o ) ) | 
						
							| 18 | 9 17 8 | frgpval | ⊢ ( 𝐼  ∈  𝑉  →  𝐺  =  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  /s   ∼  ) ) | 
						
							| 19 | 5 18 | syl | ⊢ ( 𝜑  →  𝐺  =  ( ( freeMnd ‘ ( 𝐼  ×  2o ) )  /s   ∼  ) ) | 
						
							| 20 |  | 2on | ⊢ 2o  ∈  On | 
						
							| 21 |  | xpexg | ⊢ ( ( 𝐼  ∈  𝑉  ∧  2o  ∈  On )  →  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 22 | 5 20 21 | sylancl | ⊢ ( 𝜑  →  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 23 |  | wrdexg | ⊢ ( ( 𝐼  ×  2o )  ∈  V  →  Word  ( 𝐼  ×  2o )  ∈  V ) | 
						
							| 24 |  | fvi | ⊢ ( Word  ( 𝐼  ×  2o )  ∈  V  →  (  I  ‘ Word  ( 𝐼  ×  2o ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 25 | 22 23 24 | 3syl | ⊢ ( 𝜑  →  (  I  ‘ Word  ( 𝐼  ×  2o ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 26 | 7 25 | eqtrid | ⊢ ( 𝜑  →  𝑊  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) | 
						
							| 28 | 17 27 | frmdbas | ⊢ ( ( 𝐼  ×  2o )  ∈  V  →  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 29 | 22 28 | syl | ⊢ ( 𝜑  →  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) )  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 30 | 26 29 | eqtr4d | ⊢ ( 𝜑  →  𝑊  =  ( Base ‘ ( freeMnd ‘ ( 𝐼  ×  2o ) ) ) ) | 
						
							| 31 | 8 | fvexi | ⊢  ∼   ∈  V | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →   ∼   ∈  V ) | 
						
							| 33 |  | fvexd | ⊢ ( 𝜑  →  ( freeMnd ‘ ( 𝐼  ×  2o ) )  ∈  V ) | 
						
							| 34 | 19 30 32 33 | qusbas | ⊢ ( 𝜑  →  ( 𝑊  /   ∼  )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 35 | 10 34 | eqtr4id | ⊢ ( 𝜑  →  𝑋  =  ( 𝑊  /   ∼  ) ) | 
						
							| 36 |  | eqimss | ⊢ ( 𝑋  =  ( 𝑊  /   ∼  )  →  𝑋  ⊆  ( 𝑊  /   ∼  ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝜑  →  𝑋  ⊆  ( 𝑊  /   ∼  ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑋 )  →  𝑋  ⊆  ( 𝑊  /   ∼  ) ) | 
						
							| 39 | 38 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑋 )  ∧  𝑐  ∈  𝑋 )  →  𝑐  ∈  ( 𝑊  /   ∼  ) ) | 
						
							| 40 |  | eqid | ⊢ ( 𝑊  /   ∼  )  =  ( 𝑊  /   ∼  ) | 
						
							| 41 |  | oveq2 | ⊢ ( [ 𝑢 ]  ∼   =  𝑐  →  ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  )  =  ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( [ 𝑢 ]  ∼   =  𝑐  →  ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) )  =  ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) ) | 
						
							| 43 |  | fveq2 | ⊢ ( [ 𝑢 ]  ∼   =  𝑐  →  ( 𝐸 ‘ [ 𝑢 ]  ∼  )  =  ( 𝐸 ‘ 𝑐 ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( [ 𝑢 ]  ∼   =  𝑐  →  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) )  =  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) | 
						
							| 45 | 42 44 | eqeq12d | ⊢ ( [ 𝑢 ]  ∼   =  𝑐  →  ( ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) )  =  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) )  ↔  ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) )  =  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) ) | 
						
							| 46 | 37 | sselda | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑋 )  →  𝑎  ∈  ( 𝑊  /   ∼  ) ) | 
						
							| 47 | 46 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑊 )  ∧  𝑎  ∈  𝑋 )  →  𝑎  ∈  ( 𝑊  /   ∼  ) ) | 
						
							| 48 |  | fvoveq1 | ⊢ ( [ 𝑡 ]  ∼   =  𝑎  →  ( 𝐸 ‘ ( [ 𝑡 ]  ∼  ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) )  =  ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( [ 𝑡 ]  ∼   =  𝑎  →  ( 𝐸 ‘ [ 𝑡 ]  ∼  )  =  ( 𝐸 ‘ 𝑎 ) ) | 
						
							| 50 | 49 | oveq1d | ⊢ ( [ 𝑡 ]  ∼   =  𝑎  →  ( ( 𝐸 ‘ [ 𝑡 ]  ∼  ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) )  =  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) ) ) | 
						
							| 51 | 48 50 | eqeq12d | ⊢ ( [ 𝑡 ]  ∼   =  𝑎  →  ( ( 𝐸 ‘ ( [ 𝑡 ]  ∼  ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) )  =  ( ( 𝐸 ‘ [ 𝑡 ]  ∼  ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) )  ↔  ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) )  =  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) ) ) ) | 
						
							| 52 |  | fviss | ⊢ (  I  ‘ Word  ( 𝐼  ×  2o ) )  ⊆  Word  ( 𝐼  ×  2o ) | 
						
							| 53 | 7 52 | eqsstri | ⊢ 𝑊  ⊆  Word  ( 𝐼  ×  2o ) | 
						
							| 54 | 53 | sseli | ⊢ ( 𝑡  ∈  𝑊  →  𝑡  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 55 | 53 | sseli | ⊢ ( 𝑢  ∈  𝑊  →  𝑢  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 56 |  | ccatcl | ⊢ ( ( 𝑡  ∈  Word  ( 𝐼  ×  2o )  ∧  𝑢  ∈  Word  ( 𝐼  ×  2o ) )  →  ( 𝑡  ++  𝑢 )  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 57 | 54 55 56 | syl2an | ⊢ ( ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 )  →  ( 𝑡  ++  𝑢 )  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 58 | 7 | efgrcl | ⊢ ( 𝑡  ∈  𝑊  →  ( 𝐼  ∈  V  ∧  𝑊  =  Word  ( 𝐼  ×  2o ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 )  →  ( 𝐼  ∈  V  ∧  𝑊  =  Word  ( 𝐼  ×  2o ) ) ) | 
						
							| 60 | 59 | simprd | ⊢ ( ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 )  →  𝑊  =  Word  ( 𝐼  ×  2o ) ) | 
						
							| 61 | 57 60 | eleqtrrd | ⊢ ( ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 )  →  ( 𝑡  ++  𝑢 )  ∈  𝑊 ) | 
						
							| 62 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | ⊢ ( ( 𝜑  ∧  ( 𝑡  ++  𝑢 )  ∈  𝑊 )  →  ( 𝐸 ‘ [ ( 𝑡  ++  𝑢 ) ]  ∼  )  =  ( 𝐻  Σg  ( 𝑇  ∘  ( 𝑡  ++  𝑢 ) ) ) ) | 
						
							| 63 | 61 62 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( 𝐸 ‘ [ ( 𝑡  ++  𝑢 ) ]  ∼  )  =  ( 𝐻  Σg  ( 𝑇  ∘  ( 𝑡  ++  𝑢 ) ) ) ) | 
						
							| 64 | 54 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  𝑡  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 65 | 55 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  𝑢  ∈  Word  ( 𝐼  ×  2o ) ) | 
						
							| 66 | 1 2 3 4 5 6 | frgpuptf | ⊢ ( 𝜑  →  𝑇 : ( 𝐼  ×  2o ) ⟶ 𝐵 ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  𝑇 : ( 𝐼  ×  2o ) ⟶ 𝐵 ) | 
						
							| 68 |  | ccatco | ⊢ ( ( 𝑡  ∈  Word  ( 𝐼  ×  2o )  ∧  𝑢  ∈  Word  ( 𝐼  ×  2o )  ∧  𝑇 : ( 𝐼  ×  2o ) ⟶ 𝐵 )  →  ( 𝑇  ∘  ( 𝑡  ++  𝑢 ) )  =  ( ( 𝑇  ∘  𝑡 )  ++  ( 𝑇  ∘  𝑢 ) ) ) | 
						
							| 69 | 64 65 67 68 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( 𝑇  ∘  ( 𝑡  ++  𝑢 ) )  =  ( ( 𝑇  ∘  𝑡 )  ++  ( 𝑇  ∘  𝑢 ) ) ) | 
						
							| 70 | 69 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( 𝐻  Σg  ( 𝑇  ∘  ( 𝑡  ++  𝑢 ) ) )  =  ( 𝐻  Σg  ( ( 𝑇  ∘  𝑡 )  ++  ( 𝑇  ∘  𝑢 ) ) ) ) | 
						
							| 71 | 4 | grpmndd | ⊢ ( 𝜑  →  𝐻  ∈  Mnd ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  𝐻  ∈  Mnd ) | 
						
							| 73 |  | wrdco | ⊢ ( ( 𝑡  ∈  Word  ( 𝐼  ×  2o )  ∧  𝑇 : ( 𝐼  ×  2o ) ⟶ 𝐵 )  →  ( 𝑇  ∘  𝑡 )  ∈  Word  𝐵 ) | 
						
							| 74 | 54 66 73 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝑇  ∘  𝑡 )  ∈  Word  𝐵 ) | 
						
							| 75 | 74 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( 𝑇  ∘  𝑡 )  ∈  Word  𝐵 ) | 
						
							| 76 |  | wrdco | ⊢ ( ( 𝑢  ∈  Word  ( 𝐼  ×  2o )  ∧  𝑇 : ( 𝐼  ×  2o ) ⟶ 𝐵 )  →  ( 𝑇  ∘  𝑢 )  ∈  Word  𝐵 ) | 
						
							| 77 | 65 67 76 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( 𝑇  ∘  𝑢 )  ∈  Word  𝐵 ) | 
						
							| 78 | 1 13 | gsumccat | ⊢ ( ( 𝐻  ∈  Mnd  ∧  ( 𝑇  ∘  𝑡 )  ∈  Word  𝐵  ∧  ( 𝑇  ∘  𝑢 )  ∈  Word  𝐵 )  →  ( 𝐻  Σg  ( ( 𝑇  ∘  𝑡 )  ++  ( 𝑇  ∘  𝑢 ) ) )  =  ( ( 𝐻  Σg  ( 𝑇  ∘  𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻  Σg  ( 𝑇  ∘  𝑢 ) ) ) ) | 
						
							| 79 | 72 75 77 78 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( 𝐻  Σg  ( ( 𝑇  ∘  𝑡 )  ++  ( 𝑇  ∘  𝑢 ) ) )  =  ( ( 𝐻  Σg  ( 𝑇  ∘  𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻  Σg  ( 𝑇  ∘  𝑢 ) ) ) ) | 
						
							| 80 | 63 70 79 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( 𝐸 ‘ [ ( 𝑡  ++  𝑢 ) ]  ∼  )  =  ( ( 𝐻  Σg  ( 𝑇  ∘  𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻  Σg  ( 𝑇  ∘  𝑢 ) ) ) ) | 
						
							| 81 | 7 9 8 12 | frgpadd | ⊢ ( ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 )  →  ( [ 𝑡 ]  ∼  ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  )  =  [ ( 𝑡  ++  𝑢 ) ]  ∼  ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( [ 𝑡 ]  ∼  ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  )  =  [ ( 𝑡  ++  𝑢 ) ]  ∼  ) | 
						
							| 83 | 82 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( 𝐸 ‘ ( [ 𝑡 ]  ∼  ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) )  =  ( 𝐸 ‘ [ ( 𝑡  ++  𝑢 ) ]  ∼  ) ) | 
						
							| 84 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑊 )  →  ( 𝐸 ‘ [ 𝑡 ]  ∼  )  =  ( 𝐻  Σg  ( 𝑇  ∘  𝑡 ) ) ) | 
						
							| 85 | 84 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( 𝐸 ‘ [ 𝑡 ]  ∼  )  =  ( 𝐻  Σg  ( 𝑇  ∘  𝑡 ) ) ) | 
						
							| 86 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑊 )  →  ( 𝐸 ‘ [ 𝑢 ]  ∼  )  =  ( 𝐻  Σg  ( 𝑇  ∘  𝑢 ) ) ) | 
						
							| 87 | 86 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( 𝐸 ‘ [ 𝑢 ]  ∼  )  =  ( 𝐻  Σg  ( 𝑇  ∘  𝑢 ) ) ) | 
						
							| 88 | 85 87 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( ( 𝐸 ‘ [ 𝑡 ]  ∼  ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) )  =  ( ( 𝐻  Σg  ( 𝑇  ∘  𝑡 ) ) ( +g ‘ 𝐻 ) ( 𝐻  Σg  ( 𝑇  ∘  𝑢 ) ) ) ) | 
						
							| 89 | 80 83 88 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑊  ∧  𝑢  ∈  𝑊 ) )  →  ( 𝐸 ‘ ( [ 𝑡 ]  ∼  ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) )  =  ( ( 𝐸 ‘ [ 𝑡 ]  ∼  ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) ) ) | 
						
							| 90 | 89 | anass1rs | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑊 )  ∧  𝑡  ∈  𝑊 )  →  ( 𝐸 ‘ ( [ 𝑡 ]  ∼  ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) )  =  ( ( 𝐸 ‘ [ 𝑡 ]  ∼  ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) ) ) | 
						
							| 91 | 40 51 90 | ectocld | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑊 )  ∧  𝑎  ∈  ( 𝑊  /   ∼  ) )  →  ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) )  =  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) ) ) | 
						
							| 92 | 47 91 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑊 )  ∧  𝑎  ∈  𝑋 )  →  ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) )  =  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) ) ) | 
						
							| 93 | 92 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑋 )  ∧  𝑢  ∈  𝑊 )  →  ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) [ 𝑢 ]  ∼  ) )  =  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ [ 𝑢 ]  ∼  ) ) ) | 
						
							| 94 | 40 45 93 | ectocld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑋 )  ∧  𝑐  ∈  ( 𝑊  /   ∼  ) )  →  ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) )  =  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) | 
						
							| 95 | 39 94 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑋 )  ∧  𝑐  ∈  𝑋 )  →  ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) )  =  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) | 
						
							| 96 | 95 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝐸 ‘ ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) )  =  ( ( 𝐸 ‘ 𝑎 ) ( +g ‘ 𝐻 ) ( 𝐸 ‘ 𝑐 ) ) ) | 
						
							| 97 | 10 1 12 13 15 4 16 96 | isghmd | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝐺  GrpHom  𝐻 ) ) |