| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgr2wwlkeu.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 3 |  | wpthswwlks2on | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐵 )  =  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) ) | 
						
							| 4 | 2 3 | sylan | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐵 )  =  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) ) | 
						
							| 5 | 4 | 3adant2 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐵 )  =  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴  ≠  𝐵 )  →  ( ♯ ‘ ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐵 ) )  =  ( ♯ ‘ ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) ) ) | 
						
							| 7 | 1 | frgr2wwlk1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴  ≠  𝐵 )  →  ( ♯ ‘ ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  =  1 ) | 
						
							| 8 | 6 7 | eqtrd | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝐴  ≠  𝐵 )  →  ( ♯ ‘ ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐵 ) )  =  1 ) |