| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3l | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  →  𝑃  ∈  𝑋 ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 2 | wwlks2onv | ⊢ ( ( 𝑃  ∈  𝑋  ∧  〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 4 | 1 3 | sylan | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  ∧  〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 5 |  | simp3r | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  →  𝑄  ∈  𝑌 ) | 
						
							| 6 | 2 | wwlks2onv | ⊢ ( ( 𝑄  ∈  𝑌  ∧  〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 ) )  →  ( 𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  ∧  〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 ) )  →  ( 𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 8 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 9 |  | usgrumgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UMGraph ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  UMGraph ) | 
						
							| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  →  𝐺  ∈  UMGraph ) | 
						
							| 12 |  | simpr3 | ⊢ ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  →  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 13 |  | simpl | ⊢ ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  →  𝑄  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 14 |  | simpr1 | ⊢ ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  →  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 15 | 12 13 14 | 3jca | ⊢ ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 16 | 2 | wwlks2onsym | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 )  ↔  〈“ 𝐴 𝑄 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) ) ) | 
						
							| 17 | 11 15 16 | syl2anr | ⊢ ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  →  ( 〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 )  ↔  〈“ 𝐴 𝑄 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) ) ) | 
						
							| 18 |  | simpr1 | ⊢ ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 19 |  | 3simpb | ⊢ ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 20 | 19 | ad2antlr | ⊢ ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  →  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 21 |  | simpr2 | ⊢ ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 22 | 2 | frgr2wwlkeu | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  ∧  𝐴  ≠  𝐵 )  →  ∃! 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) ) | 
						
							| 23 | 18 20 21 22 | syl3anc | ⊢ ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  →  ∃! 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) ) | 
						
							| 24 |  | s3eq2 | ⊢ ( 𝑥  =  𝑄  →  〈“ 𝐴 𝑥 𝐵 ”〉  =  〈“ 𝐴 𝑄 𝐵 ”〉 ) | 
						
							| 25 | 24 | eleq1d | ⊢ ( 𝑥  =  𝑄  →  ( 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ↔  〈“ 𝐴 𝑄 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) ) ) | 
						
							| 26 | 25 | riota2 | ⊢ ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ∃! 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  →  ( 〈“ 𝐴 𝑄 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ↔  ( ℩ 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  =  𝑄 ) ) | 
						
							| 27 | 26 | ad4ant14 | ⊢ ( ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  ∧  ∃! 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  →  ( 〈“ 𝐴 𝑄 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ↔  ( ℩ 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  =  𝑄 ) ) | 
						
							| 28 |  | simplr2 | ⊢ ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  →  𝑃  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 29 |  | s3eq2 | ⊢ ( 𝑥  =  𝑃  →  〈“ 𝐴 𝑥 𝐵 ”〉  =  〈“ 𝐴 𝑃 𝐵 ”〉 ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑥  =  𝑃  →  ( 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ↔  〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) ) ) | 
						
							| 31 | 30 | riota2 | ⊢ ( ( 𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  ∃! 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ↔  ( ℩ 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  =  𝑃 ) ) | 
						
							| 32 | 28 31 | sylan | ⊢ ( ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  ∧  ∃! 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ↔  ( ℩ 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  =  𝑃 ) ) | 
						
							| 33 |  | eqtr2 | ⊢ ( ( ( ℩ 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  =  𝑄  ∧  ( ℩ 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  =  𝑃 )  →  𝑄  =  𝑃 ) | 
						
							| 34 | 33 | expcom | ⊢ ( ( ℩ 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  =  𝑃  →  ( ( ℩ 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  =  𝑄  →  𝑄  =  𝑃 ) ) | 
						
							| 35 | 32 34 | biimtrdi | ⊢ ( ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  ∧  ∃! 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  ( ( ℩ 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  =  𝑄  →  𝑄  =  𝑃 ) ) ) | 
						
							| 36 | 35 | com23 | ⊢ ( ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  ∧  ∃! 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  →  ( ( ℩ 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  =  𝑄  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  𝑄  =  𝑃 ) ) ) | 
						
							| 37 | 27 36 | sylbid | ⊢ ( ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  ∧  ∃! 𝑥  ∈  ( Vtx ‘ 𝐺 ) 〈“ 𝐴 𝑥 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  →  ( 〈“ 𝐴 𝑄 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  𝑄  =  𝑃 ) ) ) | 
						
							| 38 | 23 37 | mpdan | ⊢ ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  →  ( 〈“ 𝐴 𝑄 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  𝑄  =  𝑃 ) ) ) | 
						
							| 39 | 17 38 | sylbid | ⊢ ( ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  ∧  ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) ) )  →  ( 〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  𝑄  =  𝑃 ) ) ) | 
						
							| 40 | 39 | expimpd | ⊢ ( ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  ∧  〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 ) )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  𝑄  =  𝑃 ) ) ) | 
						
							| 41 | 40 | ex | ⊢ ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  ∧  〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 ) )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  𝑄  =  𝑃 ) ) ) ) | 
						
							| 42 | 41 | com23 | ⊢ ( 𝑄  ∈  ( Vtx ‘ 𝐺 )  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  ∧  〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 ) )  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  𝑄  =  𝑃 ) ) ) ) | 
						
							| 43 | 42 | 3ad2ant2 | ⊢ ( ( 𝐵  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑄  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐴  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  ∧  〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 ) )  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  𝑄  =  𝑃 ) ) ) ) | 
						
							| 44 | 7 43 | mpcom | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  ∧  〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 ) )  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  𝑄  =  𝑃 ) ) ) | 
						
							| 45 | 44 | ex | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  →  ( 〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 )  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  𝑄  =  𝑃 ) ) ) ) | 
						
							| 46 | 45 | com24 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  →  ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 )  →  𝑄  =  𝑃 ) ) ) ) | 
						
							| 47 | 46 | imp | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  ∧  〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  →  ( ( 𝐴  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑃  ∈  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  ( Vtx ‘ 𝐺 ) )  →  ( 〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 )  →  𝑄  =  𝑃 ) ) ) | 
						
							| 48 | 4 47 | mpd | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  ∧  〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 ) )  →  ( 〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 )  →  𝑄  =  𝑃 ) ) | 
						
							| 49 | 48 | expimpd | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝐴  ≠  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑌 ) )  →  ( ( 〈“ 𝐴 𝑃 𝐵 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐵 )  ∧  〈“ 𝐵 𝑄 𝐴 ”〉  ∈  ( 𝐵 ( 2  WWalksNOn  𝐺 ) 𝐴 ) )  →  𝑄  =  𝑃 ) ) |