| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3l |  |-  ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> P e. X ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 2 | wwlks2onv |  |-  ( ( P e. X /\ <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) | 
						
							| 4 | 1 3 | sylan |  |-  ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) | 
						
							| 5 |  | simp3r |  |-  ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> Q e. Y ) | 
						
							| 6 | 2 | wwlks2onv |  |-  ( ( Q e. Y /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( B e. ( Vtx ` G ) /\ Q e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) ) | 
						
							| 7 | 5 6 | sylan |  |-  ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( B e. ( Vtx ` G ) /\ Q e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) ) | 
						
							| 8 |  | frgrusgr |  |-  ( G e. FriendGraph -> G e. USGraph ) | 
						
							| 9 |  | usgrumgr |  |-  ( G e. USGraph -> G e. UMGraph ) | 
						
							| 10 | 8 9 | syl |  |-  ( G e. FriendGraph -> G e. UMGraph ) | 
						
							| 11 | 10 | 3ad2ant1 |  |-  ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> G e. UMGraph ) | 
						
							| 12 |  | simpr3 |  |-  ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) -> B e. ( Vtx ` G ) ) | 
						
							| 13 |  | simpl |  |-  ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) -> Q e. ( Vtx ` G ) ) | 
						
							| 14 |  | simpr1 |  |-  ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) -> A e. ( Vtx ` G ) ) | 
						
							| 15 | 12 13 14 | 3jca |  |-  ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) -> ( B e. ( Vtx ` G ) /\ Q e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) ) | 
						
							| 16 | 2 | wwlks2onsym |  |-  ( ( G e. UMGraph /\ ( B e. ( Vtx ` G ) /\ Q e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) <-> <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) | 
						
							| 17 | 11 15 16 | syl2anr |  |-  ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) <-> <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) | 
						
							| 18 |  | simpr1 |  |-  ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> G e. FriendGraph ) | 
						
							| 19 |  | 3simpb |  |-  ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) | 
						
							| 20 | 19 | ad2antlr |  |-  ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) | 
						
							| 21 |  | simpr2 |  |-  ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> A =/= B ) | 
						
							| 22 | 2 | frgr2wwlkeu |  |-  ( ( G e. FriendGraph /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ A =/= B ) -> E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) | 
						
							| 23 | 18 20 21 22 | syl3anc |  |-  ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) | 
						
							| 24 |  | s3eq2 |  |-  ( x = Q -> <" A x B "> = <" A Q B "> ) | 
						
							| 25 | 24 | eleq1d |  |-  ( x = Q -> ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) <-> <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) | 
						
							| 26 | 25 | riota2 |  |-  ( ( Q e. ( Vtx ` G ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) <-> ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q ) ) | 
						
							| 27 | 26 | ad4ant14 |  |-  ( ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) <-> ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q ) ) | 
						
							| 28 |  | simplr2 |  |-  ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> P e. ( Vtx ` G ) ) | 
						
							| 29 |  | s3eq2 |  |-  ( x = P -> <" A x B "> = <" A P B "> ) | 
						
							| 30 | 29 | eleq1d |  |-  ( x = P -> ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) <-> <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) | 
						
							| 31 | 30 | riota2 |  |-  ( ( P e. ( Vtx ` G ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) <-> ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = P ) ) | 
						
							| 32 | 28 31 | sylan |  |-  ( ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) <-> ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = P ) ) | 
						
							| 33 |  | eqtr2 |  |-  ( ( ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q /\ ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = P ) -> Q = P ) | 
						
							| 34 | 33 | expcom |  |-  ( ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = P -> ( ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q -> Q = P ) ) | 
						
							| 35 | 32 34 | biimtrdi |  |-  ( ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q -> Q = P ) ) ) | 
						
							| 36 | 35 | com23 |  |-  ( ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) | 
						
							| 37 | 27 36 | sylbid |  |-  ( ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) | 
						
							| 38 | 23 37 | mpdan |  |-  ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> ( <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) | 
						
							| 39 | 17 38 | sylbid |  |-  ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) | 
						
							| 40 | 39 | expimpd |  |-  ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) -> ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) | 
						
							| 41 | 40 | ex |  |-  ( Q e. ( Vtx ` G ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) ) | 
						
							| 42 | 41 | com23 |  |-  ( Q e. ( Vtx ` G ) -> ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) ) | 
						
							| 43 | 42 | 3ad2ant2 |  |-  ( ( B e. ( Vtx ` G ) /\ Q e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) -> ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) ) | 
						
							| 44 | 7 43 | mpcom |  |-  ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) | 
						
							| 45 | 44 | ex |  |-  ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) ) | 
						
							| 46 | 45 | com24 |  |-  ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) -> Q = P ) ) ) ) | 
						
							| 47 | 46 | imp |  |-  ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) -> Q = P ) ) ) | 
						
							| 48 | 4 47 | mpd |  |-  ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) -> Q = P ) ) | 
						
							| 49 | 48 | expimpd |  |-  ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> ( ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> Q = P ) ) |