| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3l |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 2 | wwlks2onv |  | 
						
							| 4 | 1 3 | sylan |  | 
						
							| 5 |  | simp3r |  | 
						
							| 6 | 2 | wwlks2onv |  | 
						
							| 7 | 5 6 | sylan |  | 
						
							| 8 |  | frgrusgr |  | 
						
							| 9 |  | usgrumgr |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 | 10 | 3ad2ant1 |  | 
						
							| 12 |  | simpr3 |  | 
						
							| 13 |  | simpl |  | 
						
							| 14 |  | simpr1 |  | 
						
							| 15 | 12 13 14 | 3jca |  | 
						
							| 16 | 2 | wwlks2onsym |  | 
						
							| 17 | 11 15 16 | syl2anr |  | 
						
							| 18 |  | simpr1 |  | 
						
							| 19 |  | 3simpb |  | 
						
							| 20 | 19 | ad2antlr |  | 
						
							| 21 |  | simpr2 |  | 
						
							| 22 | 2 | frgr2wwlkeu |  | 
						
							| 23 | 18 20 21 22 | syl3anc |  | 
						
							| 24 |  | s3eq2 |  | 
						
							| 25 | 24 | eleq1d |  | 
						
							| 26 | 25 | riota2 |  | 
						
							| 27 | 26 | ad4ant14 |  | 
						
							| 28 |  | simplr2 |  | 
						
							| 29 |  | s3eq2 |  | 
						
							| 30 | 29 | eleq1d |  | 
						
							| 31 | 30 | riota2 |  | 
						
							| 32 | 28 31 | sylan |  | 
						
							| 33 |  | eqtr2 |  | 
						
							| 34 | 33 | expcom |  | 
						
							| 35 | 32 34 | biimtrdi |  | 
						
							| 36 | 35 | com23 |  | 
						
							| 37 | 27 36 | sylbid |  | 
						
							| 38 | 23 37 | mpdan |  | 
						
							| 39 | 17 38 | sylbid |  | 
						
							| 40 | 39 | expimpd |  | 
						
							| 41 | 40 | ex |  | 
						
							| 42 | 41 | com23 |  | 
						
							| 43 | 42 | 3ad2ant2 |  | 
						
							| 44 | 7 43 | mpcom |  | 
						
							| 45 | 44 | ex |  | 
						
							| 46 | 45 | com24 |  | 
						
							| 47 | 46 | imp |  | 
						
							| 48 | 4 47 | mpd |  | 
						
							| 49 | 48 | expimpd |  |