Metamath Proof Explorer


Theorem wwlks2onsym

Description: There is a walk of length 2 from one vertex to another vertex iff there is a walk of length 2 from the other vertex to the first vertex. (Contributed by AV, 7-Jan-2022)

Ref Expression
Hypothesis elwwlks2on.v V=VtxG
Assertion wwlks2onsym GUMGraphAVBVCV⟨“ABC”⟩A2WWalksNOnGC⟨“CBA”⟩C2WWalksNOnGA

Proof

Step Hyp Ref Expression
1 elwwlks2on.v V=VtxG
2 eqid EdgG=EdgG
3 1 2 umgrwwlks2on GUMGraphAVBVCV⟨“ABC”⟩A2WWalksNOnGCABEdgGBCEdgG
4 3anrev AVBVCVCVBVAV
5 1 2 umgrwwlks2on GUMGraphCVBVAV⟨“CBA”⟩C2WWalksNOnGACBEdgGBAEdgG
6 4 5 sylan2b GUMGraphAVBVCV⟨“CBA”⟩C2WWalksNOnGACBEdgGBAEdgG
7 prcom CB=BC
8 7 eleq1i CBEdgGBCEdgG
9 prcom BA=AB
10 9 eleq1i BAEdgGABEdgG
11 8 10 anbi12ci CBEdgGBAEdgGABEdgGBCEdgG
12 6 11 bitr2di GUMGraphAVBVCVABEdgGBCEdgG⟨“CBA”⟩C2WWalksNOnGA
13 3 12 bitrd GUMGraphAVBVCV⟨“ABC”⟩A2WWalksNOnGC⟨“CBA”⟩C2WWalksNOnGA