Metamath Proof Explorer


Theorem elwwlks2on

Description: A walk of length 2 between two vertices as length 3 string. (Contributed by Alexander van der Vekens, 15-Feb-2018) (Revised by AV, 12-May-2021)

Ref Expression
Hypothesis elwwlks2on.v V = Vtx G
Assertion elwwlks2on G UPGraph A V C V W A 2 WWalksNOn G C b V W = ⟨“ AbC ”⟩ f f Walks G W f = 2

Proof

Step Hyp Ref Expression
1 elwwlks2on.v V = Vtx G
2 1 elwwlks2ons3 W A 2 WWalksNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WWalksNOn G C
3 1 s3wwlks2on G UPGraph A V C V ⟨“ AbC ”⟩ A 2 WWalksNOn G C f f Walks G ⟨“ AbC ”⟩ f = 2
4 breq2 ⟨“ AbC ”⟩ = W f Walks G ⟨“ AbC ”⟩ f Walks G W
5 4 eqcoms W = ⟨“ AbC ”⟩ f Walks G ⟨“ AbC ”⟩ f Walks G W
6 5 anbi1d W = ⟨“ AbC ”⟩ f Walks G ⟨“ AbC ”⟩ f = 2 f Walks G W f = 2
7 6 exbidv W = ⟨“ AbC ”⟩ f f Walks G ⟨“ AbC ”⟩ f = 2 f f Walks G W f = 2
8 3 7 sylan9bb G UPGraph A V C V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WWalksNOn G C f f Walks G W f = 2
9 8 pm5.32da G UPGraph A V C V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WWalksNOn G C W = ⟨“ AbC ”⟩ f f Walks G W f = 2
10 9 rexbidv G UPGraph A V C V b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WWalksNOn G C b V W = ⟨“ AbC ”⟩ f f Walks G W f = 2
11 2 10 syl5bb G UPGraph A V C V W A 2 WWalksNOn G C b V W = ⟨“ AbC ”⟩ f f Walks G W f = 2