| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2on.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | elwwlks2ons3 | ⊢ ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) ) ) | 
						
							| 3 | 1 | s3wwlks2on | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 4 |  | breq2 | ⊢ ( 〈“ 𝐴 𝑏 𝐶 ”〉  =  𝑊  →  ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝑏 𝐶 ”〉  ↔  𝑓 ( Walks ‘ 𝐺 ) 𝑊 ) ) | 
						
							| 5 | 4 | eqcoms | ⊢ ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  →  ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝑏 𝐶 ”〉  ↔  𝑓 ( Walks ‘ 𝐺 ) 𝑊 ) ) | 
						
							| 6 | 5 | anbi1d | ⊢ ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ↔  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 7 | 6 | exbidv | ⊢ ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ↔  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 8 | 3 7 | sylan9bb | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉 )  →  ( 〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 9 | 8 | pm5.32da | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) )  ↔  ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) | 
						
							| 10 | 9 | rexbidv | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) | 
						
							| 11 | 2 10 | bitrid | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) |