| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2on.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | elwwlks2ons3 |  |-  ( W e. ( A ( 2 WWalksNOn G ) C ) <-> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) | 
						
							| 3 | 1 | s3wwlks2on |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) <-> E. f ( f ( Walks ` G ) <" A b C "> /\ ( # ` f ) = 2 ) ) ) | 
						
							| 4 |  | breq2 |  |-  ( <" A b C "> = W -> ( f ( Walks ` G ) <" A b C "> <-> f ( Walks ` G ) W ) ) | 
						
							| 5 | 4 | eqcoms |  |-  ( W = <" A b C "> -> ( f ( Walks ` G ) <" A b C "> <-> f ( Walks ` G ) W ) ) | 
						
							| 6 | 5 | anbi1d |  |-  ( W = <" A b C "> -> ( ( f ( Walks ` G ) <" A b C "> /\ ( # ` f ) = 2 ) <-> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) | 
						
							| 7 | 6 | exbidv |  |-  ( W = <" A b C "> -> ( E. f ( f ( Walks ` G ) <" A b C "> /\ ( # ` f ) = 2 ) <-> E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) | 
						
							| 8 | 3 7 | sylan9bb |  |-  ( ( ( G e. UPGraph /\ A e. V /\ C e. V ) /\ W = <" A b C "> ) -> ( <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) <-> E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) | 
						
							| 9 | 8 | pm5.32da |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) ) <-> ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) | 
						
							| 10 | 9 | rexbidv |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WWalksNOn G ) C ) ) <-> E. b e. V ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) | 
						
							| 11 | 2 10 | bitrid |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WWalksNOn G ) C ) <-> E. b e. V ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) |