| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2on.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wspthnon |  |-  ( W e. ( A ( 2 WSPathsNOn G ) C ) <-> ( W e. ( A ( 2 WWalksNOn G ) C ) /\ E. f f ( A ( SPathsOn ` G ) C ) W ) ) | 
						
							| 3 | 2 | biimpi |  |-  ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( W e. ( A ( 2 WWalksNOn G ) C ) /\ E. f f ( A ( SPathsOn ` G ) C ) W ) ) | 
						
							| 4 | 1 | elwwlks2on |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WWalksNOn G ) C ) <-> E. b e. V ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) | 
						
							| 5 |  | simpl |  |-  ( ( W = <" A b C "> /\ W e. ( A ( 2 WSPathsNOn G ) C ) ) -> W = <" A b C "> ) | 
						
							| 6 |  | eleq1 |  |-  ( W = <" A b C "> -> ( W e. ( A ( 2 WSPathsNOn G ) C ) <-> <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) | 
						
							| 7 | 6 | biimpa |  |-  ( ( W = <" A b C "> /\ W e. ( A ( 2 WSPathsNOn G ) C ) ) -> <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) | 
						
							| 8 | 5 7 | jca |  |-  ( ( W = <" A b C "> /\ W e. ( A ( 2 WSPathsNOn G ) C ) ) -> ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) | 
						
							| 9 | 8 | ex |  |-  ( W = <" A b C "> -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) | 
						
							| 11 | 10 | com12 |  |-  ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) | 
						
							| 12 | 11 | reximdv |  |-  ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( E. b e. V ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) | 
						
							| 13 | 12 | a1i13 |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( E. f f ( A ( SPathsOn ` G ) C ) W -> ( E. b e. V ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) ) ) | 
						
							| 14 | 13 | com24 |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( E. b e. V ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( E. f f ( A ( SPathsOn ` G ) C ) W -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) ) ) | 
						
							| 15 | 4 14 | sylbid |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WWalksNOn G ) C ) -> ( E. f f ( A ( SPathsOn ` G ) C ) W -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) ) ) | 
						
							| 16 | 15 | impd |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ E. f f ( A ( SPathsOn ` G ) C ) W ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) ) | 
						
							| 17 | 16 | com23 |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ E. f f ( A ( SPathsOn ` G ) C ) W ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) ) | 
						
							| 18 | 3 17 | mpdi |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) | 
						
							| 19 | 6 | biimpar |  |-  ( ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) -> W e. ( A ( 2 WSPathsNOn G ) C ) ) | 
						
							| 20 | 19 | a1i |  |-  ( ( ( G e. UPGraph /\ A e. V /\ C e. V ) /\ b e. V ) -> ( ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) -> W e. ( A ( 2 WSPathsNOn G ) C ) ) ) | 
						
							| 21 | 20 | rexlimdva |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) -> W e. ( A ( 2 WSPathsNOn G ) C ) ) ) | 
						
							| 22 | 18 21 | impbid |  |-  ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) <-> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) |