Step |
Hyp |
Ref |
Expression |
1 |
|
elwwlks2on.v |
|- V = ( Vtx ` G ) |
2 |
|
wspthnon |
|- ( W e. ( A ( 2 WSPathsNOn G ) C ) <-> ( W e. ( A ( 2 WWalksNOn G ) C ) /\ E. f f ( A ( SPathsOn ` G ) C ) W ) ) |
3 |
2
|
biimpi |
|- ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( W e. ( A ( 2 WWalksNOn G ) C ) /\ E. f f ( A ( SPathsOn ` G ) C ) W ) ) |
4 |
1
|
elwwlks2on |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WWalksNOn G ) C ) <-> E. b e. V ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) |
5 |
|
simpl |
|- ( ( W = <" A b C "> /\ W e. ( A ( 2 WSPathsNOn G ) C ) ) -> W = <" A b C "> ) |
6 |
|
eleq1 |
|- ( W = <" A b C "> -> ( W e. ( A ( 2 WSPathsNOn G ) C ) <-> <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) |
7 |
6
|
biimpa |
|- ( ( W = <" A b C "> /\ W e. ( A ( 2 WSPathsNOn G ) C ) ) -> <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) |
8 |
5 7
|
jca |
|- ( ( W = <" A b C "> /\ W e. ( A ( 2 WSPathsNOn G ) C ) ) -> ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) |
9 |
8
|
ex |
|- ( W = <" A b C "> -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) |
10 |
9
|
adantr |
|- ( ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) |
11 |
10
|
com12 |
|- ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) |
12 |
11
|
reximdv |
|- ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( E. b e. V ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) |
13 |
12
|
a1i13 |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( E. f f ( A ( SPathsOn ` G ) C ) W -> ( E. b e. V ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) ) ) |
14 |
13
|
com24 |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( E. b e. V ( W = <" A b C "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( E. f f ( A ( SPathsOn ` G ) C ) W -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) ) ) |
15 |
4 14
|
sylbid |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WWalksNOn G ) C ) -> ( E. f f ( A ( SPathsOn ` G ) C ) W -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) ) ) |
16 |
15
|
impd |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ E. f f ( A ( SPathsOn ` G ) C ) W ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) ) |
17 |
16
|
com23 |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> ( ( W e. ( A ( 2 WWalksNOn G ) C ) /\ E. f f ( A ( SPathsOn ` G ) C ) W ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) ) |
18 |
3 17
|
mpdi |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) -> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) |
19 |
6
|
biimpar |
|- ( ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) -> W e. ( A ( 2 WSPathsNOn G ) C ) ) |
20 |
19
|
a1i |
|- ( ( ( G e. UPGraph /\ A e. V /\ C e. V ) /\ b e. V ) -> ( ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) -> W e. ( A ( 2 WSPathsNOn G ) C ) ) ) |
21 |
20
|
rexlimdva |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) -> W e. ( A ( 2 WSPathsNOn G ) C ) ) ) |
22 |
18 21
|
impbid |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( W e. ( A ( 2 WSPathsNOn G ) C ) <-> E. b e. V ( W = <" A b C "> /\ <" A b C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) ) |