| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlknon |  |-  ( w e. ( A ( 2 WWalksNOn G ) B ) <-> ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) | 
						
							| 2 | 1 | a1i |  |-  ( ( G e. USGraph /\ A =/= B ) -> ( w e. ( A ( 2 WWalksNOn G ) B ) <-> ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) ) | 
						
							| 3 | 2 | anbi1d |  |-  ( ( G e. USGraph /\ A =/= B ) -> ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) | 
						
							| 4 |  | 3anass |  |-  ( ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) <-> ( w e. ( 2 WWalksN G ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) ) | 
						
							| 5 | 4 | anbi1i |  |-  ( ( ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( ( w e. ( 2 WWalksN G ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) | 
						
							| 6 |  | anass |  |-  ( ( ( w e. ( 2 WWalksN G ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( w e. ( 2 WWalksN G ) /\ ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) | 
						
							| 7 | 5 6 | bitri |  |-  ( ( ( w e. ( 2 WWalksN G ) /\ ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( w e. ( 2 WWalksN G ) /\ ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) | 
						
							| 8 | 3 7 | bitrdi |  |-  ( ( G e. USGraph /\ A =/= B ) -> ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( w e. ( 2 WWalksN G ) /\ ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) ) | 
						
							| 9 | 8 | rabbidva2 |  |-  ( ( G e. USGraph /\ A =/= B ) -> { w e. ( A ( 2 WWalksNOn G ) B ) | E. f f ( A ( SPathsOn ` G ) B ) w } = { w e. ( 2 WWalksN G ) | ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) } ) | 
						
							| 10 |  | usgrupgr |  |-  ( G e. USGraph -> G e. UPGraph ) | 
						
							| 11 |  | wlklnwwlknupgr |  |-  ( G e. UPGraph -> ( E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) <-> w e. ( 2 WWalksN G ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( G e. USGraph -> ( E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) <-> w e. ( 2 WWalksN G ) ) ) | 
						
							| 13 | 12 | bicomd |  |-  ( G e. USGraph -> ( w e. ( 2 WWalksN G ) <-> E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( G e. USGraph /\ A =/= B ) -> ( w e. ( 2 WWalksN G ) <-> E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) ) | 
						
							| 15 |  | simprl |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> f ( Walks ` G ) w ) | 
						
							| 16 |  | simprl |  |-  ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) -> ( w ` 0 ) = A ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( w ` 0 ) = A ) | 
						
							| 18 |  | fveq2 |  |-  ( ( # ` f ) = 2 -> ( w ` ( # ` f ) ) = ( w ` 2 ) ) | 
						
							| 19 | 18 | ad2antll |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( w ` ( # ` f ) ) = ( w ` 2 ) ) | 
						
							| 20 |  | simprr |  |-  ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) -> ( w ` 2 ) = B ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( w ` 2 ) = B ) | 
						
							| 22 | 19 21 | eqtrd |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( w ` ( # ` f ) ) = B ) | 
						
							| 23 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 24 | 23 | wlkp |  |-  ( f ( Walks ` G ) w -> w : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) | 
						
							| 25 |  | oveq2 |  |-  ( ( # ` f ) = 2 -> ( 0 ... ( # ` f ) ) = ( 0 ... 2 ) ) | 
						
							| 26 | 25 | feq2d |  |-  ( ( # ` f ) = 2 -> ( w : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) <-> w : ( 0 ... 2 ) --> ( Vtx ` G ) ) ) | 
						
							| 27 | 24 26 | syl5ibcom |  |-  ( f ( Walks ` G ) w -> ( ( # ` f ) = 2 -> w : ( 0 ... 2 ) --> ( Vtx ` G ) ) ) | 
						
							| 28 | 27 | imp |  |-  ( ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> w : ( 0 ... 2 ) --> ( Vtx ` G ) ) | 
						
							| 29 |  | id |  |-  ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> w : ( 0 ... 2 ) --> ( Vtx ` G ) ) | 
						
							| 30 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 31 |  | 0elfz |  |-  ( 2 e. NN0 -> 0 e. ( 0 ... 2 ) ) | 
						
							| 32 | 30 31 | mp1i |  |-  ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> 0 e. ( 0 ... 2 ) ) | 
						
							| 33 | 29 32 | ffvelcdmd |  |-  ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( w ` 0 ) e. ( Vtx ` G ) ) | 
						
							| 34 |  | nn0fz0 |  |-  ( 2 e. NN0 <-> 2 e. ( 0 ... 2 ) ) | 
						
							| 35 | 30 34 | mpbi |  |-  2 e. ( 0 ... 2 ) | 
						
							| 36 | 35 | a1i |  |-  ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> 2 e. ( 0 ... 2 ) ) | 
						
							| 37 | 29 36 | ffvelcdmd |  |-  ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( w ` 2 ) e. ( Vtx ` G ) ) | 
						
							| 38 | 33 37 | jca |  |-  ( w : ( 0 ... 2 ) --> ( Vtx ` G ) -> ( ( w ` 0 ) e. ( Vtx ` G ) /\ ( w ` 2 ) e. ( Vtx ` G ) ) ) | 
						
							| 39 | 28 38 | syl |  |-  ( ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> ( ( w ` 0 ) e. ( Vtx ` G ) /\ ( w ` 2 ) e. ( Vtx ` G ) ) ) | 
						
							| 40 |  | eleq1 |  |-  ( ( w ` 0 ) = A -> ( ( w ` 0 ) e. ( Vtx ` G ) <-> A e. ( Vtx ` G ) ) ) | 
						
							| 41 |  | eleq1 |  |-  ( ( w ` 2 ) = B -> ( ( w ` 2 ) e. ( Vtx ` G ) <-> B e. ( Vtx ` G ) ) ) | 
						
							| 42 | 40 41 | bi2anan9 |  |-  ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> ( ( ( w ` 0 ) e. ( Vtx ` G ) /\ ( w ` 2 ) e. ( Vtx ` G ) ) <-> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) | 
						
							| 43 | 39 42 | imbitrid |  |-  ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> ( ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) | 
						
							| 44 | 43 | adantl |  |-  ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) -> ( ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) ) | 
						
							| 45 | 44 | imp |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) | 
						
							| 46 |  | vex |  |-  f e. _V | 
						
							| 47 |  | vex |  |-  w e. _V | 
						
							| 48 | 46 47 | pm3.2i |  |-  ( f e. _V /\ w e. _V ) | 
						
							| 49 | 23 | iswlkon |  |-  ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( f e. _V /\ w e. _V ) ) -> ( f ( A ( WalksOn ` G ) B ) w <-> ( f ( Walks ` G ) w /\ ( w ` 0 ) = A /\ ( w ` ( # ` f ) ) = B ) ) ) | 
						
							| 50 | 45 48 49 | sylancl |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( f ( A ( WalksOn ` G ) B ) w <-> ( f ( Walks ` G ) w /\ ( w ` 0 ) = A /\ ( w ` ( # ` f ) ) = B ) ) ) | 
						
							| 51 | 15 17 22 50 | mpbir3and |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> f ( A ( WalksOn ` G ) B ) w ) | 
						
							| 52 |  | simplll |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> G e. USGraph ) | 
						
							| 53 |  | simprr |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( # ` f ) = 2 ) | 
						
							| 54 |  | simpllr |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> A =/= B ) | 
						
							| 55 |  | usgr2wlkspth |  |-  ( ( G e. USGraph /\ ( # ` f ) = 2 /\ A =/= B ) -> ( f ( A ( WalksOn ` G ) B ) w <-> f ( A ( SPathsOn ` G ) B ) w ) ) | 
						
							| 56 | 52 53 54 55 | syl3anc |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> ( f ( A ( WalksOn ` G ) B ) w <-> f ( A ( SPathsOn ` G ) B ) w ) ) | 
						
							| 57 | 51 56 | mpbid |  |-  ( ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) /\ ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) ) -> f ( A ( SPathsOn ` G ) B ) w ) | 
						
							| 58 | 57 | ex |  |-  ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) -> ( ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> f ( A ( SPathsOn ` G ) B ) w ) ) | 
						
							| 59 | 58 | eximdv |  |-  ( ( ( G e. USGraph /\ A =/= B ) /\ ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) -> ( E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> E. f f ( A ( SPathsOn ` G ) B ) w ) ) | 
						
							| 60 | 59 | ex |  |-  ( ( G e. USGraph /\ A =/= B ) -> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> ( E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) | 
						
							| 61 | 60 | com23 |  |-  ( ( G e. USGraph /\ A =/= B ) -> ( E. f ( f ( Walks ` G ) w /\ ( # ` f ) = 2 ) -> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) | 
						
							| 62 | 14 61 | sylbid |  |-  ( ( G e. USGraph /\ A =/= B ) -> ( w e. ( 2 WWalksN G ) -> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) | 
						
							| 63 | 62 | imp |  |-  ( ( ( G e. USGraph /\ A =/= B ) /\ w e. ( 2 WWalksN G ) ) -> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) -> E. f f ( A ( SPathsOn ` G ) B ) w ) ) | 
						
							| 64 | 63 | pm4.71d |  |-  ( ( ( G e. USGraph /\ A =/= B ) /\ w e. ( 2 WWalksN G ) ) -> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) <-> ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) ) ) | 
						
							| 65 | 64 | bicomd |  |-  ( ( ( G e. USGraph /\ A =/= B ) /\ w e. ( 2 WWalksN G ) ) -> ( ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) <-> ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) ) ) | 
						
							| 66 | 65 | rabbidva |  |-  ( ( G e. USGraph /\ A =/= B ) -> { w e. ( 2 WWalksN G ) | ( ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) /\ E. f f ( A ( SPathsOn ` G ) B ) w ) } = { w e. ( 2 WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) } ) | 
						
							| 67 | 9 66 | eqtrd |  |-  ( ( G e. USGraph /\ A =/= B ) -> { w e. ( A ( 2 WWalksNOn G ) B ) | E. f f ( A ( SPathsOn ` G ) B ) w } = { w e. ( 2 WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) } ) | 
						
							| 68 | 23 | iswspthsnon |  |-  ( A ( 2 WSPathsNOn G ) B ) = { w e. ( A ( 2 WWalksNOn G ) B ) | E. f f ( A ( SPathsOn ` G ) B ) w } | 
						
							| 69 | 23 | iswwlksnon |  |-  ( A ( 2 WWalksNOn G ) B ) = { w e. ( 2 WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` 2 ) = B ) } | 
						
							| 70 | 67 68 69 | 3eqtr4g |  |-  ( ( G e. USGraph /\ A =/= B ) -> ( A ( 2 WSPathsNOn G ) B ) = ( A ( 2 WWalksNOn G ) B ) ) |