| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( b = c -> ( A ( 2 WSPathsNOn G ) b ) = ( A ( 2 WSPathsNOn G ) c ) ) | 
						
							| 2 |  | wspthneq1eq2 |  |-  ( ( t e. ( A ( 2 WSPathsNOn G ) b ) /\ t e. ( A ( 2 WSPathsNOn G ) c ) ) -> ( A = A /\ b = c ) ) | 
						
							| 3 | 2 | simprd |  |-  ( ( t e. ( A ( 2 WSPathsNOn G ) b ) /\ t e. ( A ( 2 WSPathsNOn G ) c ) ) -> b = c ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( T. /\ t e. ( A ( 2 WSPathsNOn G ) b ) /\ t e. ( A ( 2 WSPathsNOn G ) c ) ) -> b = c ) | 
						
							| 5 | 1 4 | disjord |  |-  ( T. -> Disj_ b e. ( V \ { A } ) ( A ( 2 WSPathsNOn G ) b ) ) | 
						
							| 6 | 5 | mptru |  |-  Disj_ b e. ( V \ { A } ) ( A ( 2 WSPathsNOn G ) b ) |