| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( a = c -> ( a ( 2 WSPathsNOn G ) b ) = ( c ( 2 WSPathsNOn G ) b ) ) | 
						
							| 2 |  | oveq2 |  |-  ( b = d -> ( c ( 2 WSPathsNOn G ) b ) = ( c ( 2 WSPathsNOn G ) d ) ) | 
						
							| 3 |  | sneq |  |-  ( a = c -> { a } = { c } ) | 
						
							| 4 | 3 | difeq2d |  |-  ( a = c -> ( V \ { a } ) = ( V \ { c } ) ) | 
						
							| 5 |  | wspthneq1eq2 |  |-  ( ( t e. ( a ( 2 WSPathsNOn G ) b ) /\ t e. ( c ( 2 WSPathsNOn G ) d ) ) -> ( a = c /\ b = d ) ) | 
						
							| 6 | 5 | simpld |  |-  ( ( t e. ( a ( 2 WSPathsNOn G ) b ) /\ t e. ( c ( 2 WSPathsNOn G ) d ) ) -> a = c ) | 
						
							| 7 | 6 | 3adant1 |  |-  ( ( T. /\ t e. ( a ( 2 WSPathsNOn G ) b ) /\ t e. ( c ( 2 WSPathsNOn G ) d ) ) -> a = c ) | 
						
							| 8 | 1 2 4 7 | disjiund |  |-  ( T. -> Disj_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) | 
						
							| 9 | 8 | mptru |  |-  Disj_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) |