| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑎  =  𝑐  →  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑏 )  =  ( 𝑐 ( 2  WSPathsNOn  𝐺 ) 𝑏 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑏  =  𝑑  →  ( 𝑐 ( 2  WSPathsNOn  𝐺 ) 𝑏 )  =  ( 𝑐 ( 2  WSPathsNOn  𝐺 ) 𝑑 ) ) | 
						
							| 3 |  | sneq | ⊢ ( 𝑎  =  𝑐  →  { 𝑎 }  =  { 𝑐 } ) | 
						
							| 4 | 3 | difeq2d | ⊢ ( 𝑎  =  𝑐  →  ( 𝑉  ∖  { 𝑎 } )  =  ( 𝑉  ∖  { 𝑐 } ) ) | 
						
							| 5 |  | wspthneq1eq2 | ⊢ ( ( 𝑡  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑏 )  ∧  𝑡  ∈  ( 𝑐 ( 2  WSPathsNOn  𝐺 ) 𝑑 ) )  →  ( 𝑎  =  𝑐  ∧  𝑏  =  𝑑 ) ) | 
						
							| 6 | 5 | simpld | ⊢ ( ( 𝑡  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑏 )  ∧  𝑡  ∈  ( 𝑐 ( 2  WSPathsNOn  𝐺 ) 𝑑 ) )  →  𝑎  =  𝑐 ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( ⊤  ∧  𝑡  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑏 )  ∧  𝑡  ∈  ( 𝑐 ( 2  WSPathsNOn  𝐺 ) 𝑑 ) )  →  𝑎  =  𝑐 ) | 
						
							| 8 | 1 2 4 7 | disjiund | ⊢ ( ⊤  →  Disj  𝑎  ∈  𝑉 ∪  𝑏  ∈  ( 𝑉  ∖  { 𝑎 } ) ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑏 ) ) | 
						
							| 9 | 8 | mptru | ⊢ Disj  𝑎  ∈  𝑉 ∪  𝑏  ∈  ( 𝑉  ∖  { 𝑎 } ) ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑏 ) |