Metamath Proof Explorer


Theorem disjiund

Description: Conditions for a collection of index unions of sets A ( a , b ) for a e. V and b e. W to be disjoint. (Contributed by AV, 9-Jan-2022)

Ref Expression
Hypotheses disjiund.1 ( 𝑎 = 𝑐𝐴 = 𝐶 )
disjiund.2 ( 𝑏 = 𝑑𝐶 = 𝐷 )
disjiund.3 ( 𝑎 = 𝑐𝑊 = 𝑋 )
disjiund.4 ( ( 𝜑𝑥𝐴𝑥𝐷 ) → 𝑎 = 𝑐 )
Assertion disjiund ( 𝜑Disj 𝑎𝑉 𝑏𝑊 𝐴 )

Proof

Step Hyp Ref Expression
1 disjiund.1 ( 𝑎 = 𝑐𝐴 = 𝐶 )
2 disjiund.2 ( 𝑏 = 𝑑𝐶 = 𝐷 )
3 disjiund.3 ( 𝑎 = 𝑐𝑊 = 𝑋 )
4 disjiund.4 ( ( 𝜑𝑥𝐴𝑥𝐷 ) → 𝑎 = 𝑐 )
5 eliun ( 𝑥 𝑏𝑊 𝐴 ↔ ∃ 𝑏𝑊 𝑥𝐴 )
6 eliun ( 𝑥 𝑏𝑋 𝐶 ↔ ∃ 𝑏𝑋 𝑥𝐶 )
7 2 eleq2d ( 𝑏 = 𝑑 → ( 𝑥𝐶𝑥𝐷 ) )
8 7 cbvrexvw ( ∃ 𝑏𝑋 𝑥𝐶 ↔ ∃ 𝑑𝑋 𝑥𝐷 )
9 4 3exp ( 𝜑 → ( 𝑥𝐴 → ( 𝑥𝐷𝑎 = 𝑐 ) ) )
10 9 rexlimdvw ( 𝜑 → ( ∃ 𝑏𝑊 𝑥𝐴 → ( 𝑥𝐷𝑎 = 𝑐 ) ) )
11 10 imp ( ( 𝜑 ∧ ∃ 𝑏𝑊 𝑥𝐴 ) → ( 𝑥𝐷𝑎 = 𝑐 ) )
12 11 rexlimdvw ( ( 𝜑 ∧ ∃ 𝑏𝑊 𝑥𝐴 ) → ( ∃ 𝑑𝑋 𝑥𝐷𝑎 = 𝑐 ) )
13 8 12 syl5bi ( ( 𝜑 ∧ ∃ 𝑏𝑊 𝑥𝐴 ) → ( ∃ 𝑏𝑋 𝑥𝐶𝑎 = 𝑐 ) )
14 6 13 syl5bi ( ( 𝜑 ∧ ∃ 𝑏𝑊 𝑥𝐴 ) → ( 𝑥 𝑏𝑋 𝐶𝑎 = 𝑐 ) )
15 14 con3d ( ( 𝜑 ∧ ∃ 𝑏𝑊 𝑥𝐴 ) → ( ¬ 𝑎 = 𝑐 → ¬ 𝑥 𝑏𝑋 𝐶 ) )
16 15 impancom ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ( ∃ 𝑏𝑊 𝑥𝐴 → ¬ 𝑥 𝑏𝑋 𝐶 ) )
17 5 16 syl5bi ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ( 𝑥 𝑏𝑊 𝐴 → ¬ 𝑥 𝑏𝑋 𝐶 ) )
18 17 ralrimiv ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ∀ 𝑥 𝑏𝑊 𝐴 ¬ 𝑥 𝑏𝑋 𝐶 )
19 disj ( ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶 ) = ∅ ↔ ∀ 𝑥 𝑏𝑊 𝐴 ¬ 𝑥 𝑏𝑋 𝐶 )
20 18 19 sylibr ( ( 𝜑 ∧ ¬ 𝑎 = 𝑐 ) → ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶 ) = ∅ )
21 20 ex ( 𝜑 → ( ¬ 𝑎 = 𝑐 → ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶 ) = ∅ ) )
22 21 orrd ( 𝜑 → ( 𝑎 = 𝑐 ∨ ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶 ) = ∅ ) )
23 22 a1d ( 𝜑 → ( ( 𝑎𝑉𝑐𝑉 ) → ( 𝑎 = 𝑐 ∨ ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶 ) = ∅ ) ) )
24 23 ralrimivv ( 𝜑 → ∀ 𝑎𝑉𝑐𝑉 ( 𝑎 = 𝑐 ∨ ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶 ) = ∅ ) )
25 3 1 disjiunb ( Disj 𝑎𝑉 𝑏𝑊 𝐴 ↔ ∀ 𝑎𝑉𝑐𝑉 ( 𝑎 = 𝑐 ∨ ( 𝑏𝑊 𝐴 𝑏𝑋 𝐶 ) = ∅ ) )
26 24 25 sylibr ( 𝜑Disj 𝑎𝑉 𝑏𝑊 𝐴 )