| Step | Hyp | Ref | Expression | 
						
							| 1 |  | disjiund.1 | ⊢ ( 𝑎  =  𝑐  →  𝐴  =  𝐶 ) | 
						
							| 2 |  | disjiund.2 | ⊢ ( 𝑏  =  𝑑  →  𝐶  =  𝐷 ) | 
						
							| 3 |  | disjiund.3 | ⊢ ( 𝑎  =  𝑐  →  𝑊  =  𝑋 ) | 
						
							| 4 |  | disjiund.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐷 )  →  𝑎  =  𝑐 ) | 
						
							| 5 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑏  ∈  𝑊 𝐴  ↔  ∃ 𝑏  ∈  𝑊 𝑥  ∈  𝐴 ) | 
						
							| 6 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑏  ∈  𝑋 𝐶  ↔  ∃ 𝑏  ∈  𝑋 𝑥  ∈  𝐶 ) | 
						
							| 7 | 2 | eleq2d | ⊢ ( 𝑏  =  𝑑  →  ( 𝑥  ∈  𝐶  ↔  𝑥  ∈  𝐷 ) ) | 
						
							| 8 | 7 | cbvrexvw | ⊢ ( ∃ 𝑏  ∈  𝑋 𝑥  ∈  𝐶  ↔  ∃ 𝑑  ∈  𝑋 𝑥  ∈  𝐷 ) | 
						
							| 9 | 4 | 3exp | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐷  →  𝑎  =  𝑐 ) ) ) | 
						
							| 10 | 9 | rexlimdvw | ⊢ ( 𝜑  →  ( ∃ 𝑏  ∈  𝑊 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐷  →  𝑎  =  𝑐 ) ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑏  ∈  𝑊 𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝐷  →  𝑎  =  𝑐 ) ) | 
						
							| 12 | 11 | rexlimdvw | ⊢ ( ( 𝜑  ∧  ∃ 𝑏  ∈  𝑊 𝑥  ∈  𝐴 )  →  ( ∃ 𝑑  ∈  𝑋 𝑥  ∈  𝐷  →  𝑎  =  𝑐 ) ) | 
						
							| 13 | 8 12 | biimtrid | ⊢ ( ( 𝜑  ∧  ∃ 𝑏  ∈  𝑊 𝑥  ∈  𝐴 )  →  ( ∃ 𝑏  ∈  𝑋 𝑥  ∈  𝐶  →  𝑎  =  𝑐 ) ) | 
						
							| 14 | 6 13 | biimtrid | ⊢ ( ( 𝜑  ∧  ∃ 𝑏  ∈  𝑊 𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  ∪  𝑏  ∈  𝑋 𝐶  →  𝑎  =  𝑐 ) ) | 
						
							| 15 | 14 | con3d | ⊢ ( ( 𝜑  ∧  ∃ 𝑏  ∈  𝑊 𝑥  ∈  𝐴 )  →  ( ¬  𝑎  =  𝑐  →  ¬  𝑥  ∈  ∪  𝑏  ∈  𝑋 𝐶 ) ) | 
						
							| 16 | 15 | impancom | ⊢ ( ( 𝜑  ∧  ¬  𝑎  =  𝑐 )  →  ( ∃ 𝑏  ∈  𝑊 𝑥  ∈  𝐴  →  ¬  𝑥  ∈  ∪  𝑏  ∈  𝑋 𝐶 ) ) | 
						
							| 17 | 5 16 | biimtrid | ⊢ ( ( 𝜑  ∧  ¬  𝑎  =  𝑐 )  →  ( 𝑥  ∈  ∪  𝑏  ∈  𝑊 𝐴  →  ¬  𝑥  ∈  ∪  𝑏  ∈  𝑋 𝐶 ) ) | 
						
							| 18 | 17 | ralrimiv | ⊢ ( ( 𝜑  ∧  ¬  𝑎  =  𝑐 )  →  ∀ 𝑥  ∈  ∪  𝑏  ∈  𝑊 𝐴 ¬  𝑥  ∈  ∪  𝑏  ∈  𝑋 𝐶 ) | 
						
							| 19 |  | disj | ⊢ ( ( ∪  𝑏  ∈  𝑊 𝐴  ∩  ∪  𝑏  ∈  𝑋 𝐶 )  =  ∅  ↔  ∀ 𝑥  ∈  ∪  𝑏  ∈  𝑊 𝐴 ¬  𝑥  ∈  ∪  𝑏  ∈  𝑋 𝐶 ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( ( 𝜑  ∧  ¬  𝑎  =  𝑐 )  →  ( ∪  𝑏  ∈  𝑊 𝐴  ∩  ∪  𝑏  ∈  𝑋 𝐶 )  =  ∅ ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝜑  →  ( ¬  𝑎  =  𝑐  →  ( ∪  𝑏  ∈  𝑊 𝐴  ∩  ∪  𝑏  ∈  𝑋 𝐶 )  =  ∅ ) ) | 
						
							| 22 | 21 | orrd | ⊢ ( 𝜑  →  ( 𝑎  =  𝑐  ∨  ( ∪  𝑏  ∈  𝑊 𝐴  ∩  ∪  𝑏  ∈  𝑋 𝐶 )  =  ∅ ) ) | 
						
							| 23 | 22 | a1d | ⊢ ( 𝜑  →  ( ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  ( 𝑎  =  𝑐  ∨  ( ∪  𝑏  ∈  𝑊 𝐴  ∩  ∪  𝑏  ∈  𝑋 𝐶 )  =  ∅ ) ) ) | 
						
							| 24 | 23 | ralrimivv | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑉 ∀ 𝑐  ∈  𝑉 ( 𝑎  =  𝑐  ∨  ( ∪  𝑏  ∈  𝑊 𝐴  ∩  ∪  𝑏  ∈  𝑋 𝐶 )  =  ∅ ) ) | 
						
							| 25 | 3 1 | disjiunb | ⊢ ( Disj  𝑎  ∈  𝑉 ∪  𝑏  ∈  𝑊 𝐴  ↔  ∀ 𝑎  ∈  𝑉 ∀ 𝑐  ∈  𝑉 ( 𝑎  =  𝑐  ∨  ( ∪  𝑏  ∈  𝑊 𝐴  ∩  ∪  𝑏  ∈  𝑋 𝐶 )  =  ∅ ) ) | 
						
							| 26 | 24 25 | sylibr | ⊢ ( 𝜑  →  Disj  𝑎  ∈  𝑉 ∪  𝑏  ∈  𝑊 𝐴 ) |