| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgr2wspthon0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | usgr2wspthon0.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 4 |  | ne0i | ⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ≠  ∅ ) | 
						
							| 5 |  | wspthsnonn0vne | ⊢ ( ( 2  ∈  ℕ  ∧  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ≠  ∅ )  →  𝐴  ≠  𝐶 ) | 
						
							| 6 | 3 4 5 | sylancr | ⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  𝐴  ≠  𝐶 ) | 
						
							| 7 |  | simplr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐶 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  →  𝐴  ≠  𝐶 ) | 
						
							| 8 |  | wpthswwlks2on | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐶 )  →  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  =  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐶 )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐶 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) ) | 
						
							| 11 | 7 10 | jca | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐶 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  →  ( 𝐴  ≠  𝐶  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) ) ) | 
						
							| 12 | 11 | exp31 | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝐴  ≠  𝐶  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( 𝐴  ≠  𝐶  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) ) ) ) ) | 
						
							| 13 | 12 | com13 | ⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( 𝐴  ≠  𝐶  →  ( 𝐺  ∈  USGraph  →  ( 𝐴  ≠  𝐶  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) ) ) ) ) | 
						
							| 14 | 6 13 | mpd | ⊢ ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( 𝐺  ∈  USGraph  →  ( 𝐴  ≠  𝐶  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) ) ) ) | 
						
							| 15 | 14 | com12 | ⊢ ( 𝐺  ∈  USGraph  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  →  ( 𝐴  ≠  𝐶  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) ) ) ) | 
						
							| 16 | 9 | biimprd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐴  ≠  𝐶 )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) | 
						
							| 17 | 16 | expimpd | ⊢ ( 𝐺  ∈  USGraph  →  ( ( 𝐴  ≠  𝐶  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) )  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) | 
						
							| 18 | 15 17 | impbid | ⊢ ( 𝐺  ∈  USGraph  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  ( 𝐴  ≠  𝐶  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  ( 𝐴  ≠  𝐶  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) ) ) ) | 
						
							| 20 |  | usgrumgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UMGraph ) | 
						
							| 21 | 1 2 | umgrwwlks2on | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 22 | 20 21 | sylan | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 23 | 22 | anbi2d | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝐴  ≠  𝐶  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) )  ↔  ( 𝐴  ≠  𝐶  ∧  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) ) | 
						
							| 24 |  | 3anass | ⊢ ( ( 𝐴  ≠  𝐶  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ↔  ( 𝐴  ≠  𝐶  ∧  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 25 | 23 24 | bitr4di | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝐴  ≠  𝐶  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 ) )  ↔  ( 𝐴  ≠  𝐶  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 26 | 19 25 | bitrd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  ( 𝐴  ≠  𝐶  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) |