| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgr2wspthon0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | usgr2wspthon0.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | 2nn |  |-  2 e. NN | 
						
							| 4 |  | ne0i |  |-  ( <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) -> ( A ( 2 WSPathsNOn G ) C ) =/= (/) ) | 
						
							| 5 |  | wspthsnonn0vne |  |-  ( ( 2 e. NN /\ ( A ( 2 WSPathsNOn G ) C ) =/= (/) ) -> A =/= C ) | 
						
							| 6 | 3 4 5 | sylancr |  |-  ( <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) -> A =/= C ) | 
						
							| 7 |  | simplr |  |-  ( ( ( G e. USGraph /\ A =/= C ) /\ <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) ) -> A =/= C ) | 
						
							| 8 |  | wpthswwlks2on |  |-  ( ( G e. USGraph /\ A =/= C ) -> ( A ( 2 WSPathsNOn G ) C ) = ( A ( 2 WWalksNOn G ) C ) ) | 
						
							| 9 | 8 | eleq2d |  |-  ( ( G e. USGraph /\ A =/= C ) -> ( <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) <-> <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) | 
						
							| 10 | 9 | biimpa |  |-  ( ( ( G e. USGraph /\ A =/= C ) /\ <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) ) -> <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) | 
						
							| 11 | 7 10 | jca |  |-  ( ( ( G e. USGraph /\ A =/= C ) /\ <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) ) -> ( A =/= C /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) | 
						
							| 12 | 11 | exp31 |  |-  ( G e. USGraph -> ( A =/= C -> ( <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) -> ( A =/= C /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) ) ) | 
						
							| 13 | 12 | com13 |  |-  ( <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) -> ( A =/= C -> ( G e. USGraph -> ( A =/= C /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) ) ) | 
						
							| 14 | 6 13 | mpd |  |-  ( <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) -> ( G e. USGraph -> ( A =/= C /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) ) | 
						
							| 15 | 14 | com12 |  |-  ( G e. USGraph -> ( <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) -> ( A =/= C /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) ) | 
						
							| 16 | 9 | biimprd |  |-  ( ( G e. USGraph /\ A =/= C ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) -> <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) | 
						
							| 17 | 16 | expimpd |  |-  ( G e. USGraph -> ( ( A =/= C /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) -> <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) ) ) | 
						
							| 18 | 15 17 | impbid |  |-  ( G e. USGraph -> ( <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) <-> ( A =/= C /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( G e. USGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) <-> ( A =/= C /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) ) ) | 
						
							| 20 |  | usgrumgr |  |-  ( G e. USGraph -> G e. UMGraph ) | 
						
							| 21 | 1 2 | umgrwwlks2on |  |-  ( ( G e. UMGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 22 | 20 21 | sylan |  |-  ( ( G e. USGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 23 | 22 | anbi2d |  |-  ( ( G e. USGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A =/= C /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) <-> ( A =/= C /\ ( { A , B } e. E /\ { B , C } e. E ) ) ) ) | 
						
							| 24 |  | 3anass |  |-  ( ( A =/= C /\ { A , B } e. E /\ { B , C } e. E ) <-> ( A =/= C /\ ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 25 | 23 24 | bitr4di |  |-  ( ( G e. USGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A =/= C /\ <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) ) <-> ( A =/= C /\ { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 26 | 19 25 | bitrd |  |-  ( ( G e. USGraph /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( <" A B C "> e. ( A ( 2 WSPathsNOn G ) C ) <-> ( A =/= C /\ { A , B } e. E /\ { B , C } e. E ) ) ) |