| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 |  |-  ( ( X ( N WSPathsNOn G ) Y ) =/= (/) <-> E. p p e. ( X ( N WSPathsNOn G ) Y ) ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 | 2 | wspthnonp |  |-  ( p e. ( X ( N WSPathsNOn G ) Y ) -> ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) /\ ( p e. ( X ( N WWalksNOn G ) Y ) /\ E. f f ( X ( SPathsOn ` G ) Y ) p ) ) ) | 
						
							| 4 |  | wwlknon |  |-  ( p e. ( X ( N WWalksNOn G ) Y ) <-> ( p e. ( N WWalksN G ) /\ ( p ` 0 ) = X /\ ( p ` N ) = Y ) ) | 
						
							| 5 |  | iswwlksn |  |-  ( N e. NN0 -> ( p e. ( N WWalksN G ) <-> ( p e. ( WWalks ` G ) /\ ( # ` p ) = ( N + 1 ) ) ) ) | 
						
							| 6 |  | spthonisspth |  |-  ( f ( X ( SPathsOn ` G ) Y ) p -> f ( SPaths ` G ) p ) | 
						
							| 7 |  | spthispth |  |-  ( f ( SPaths ` G ) p -> f ( Paths ` G ) p ) | 
						
							| 8 |  | pthiswlk |  |-  ( f ( Paths ` G ) p -> f ( Walks ` G ) p ) | 
						
							| 9 |  | wlklenvm1 |  |-  ( f ( Walks ` G ) p -> ( # ` f ) = ( ( # ` p ) - 1 ) ) | 
						
							| 10 | 6 7 8 9 | 4syl |  |-  ( f ( X ( SPathsOn ` G ) Y ) p -> ( # ` f ) = ( ( # ` p ) - 1 ) ) | 
						
							| 11 |  | oveq1 |  |-  ( ( # ` p ) = ( N + 1 ) -> ( ( # ` p ) - 1 ) = ( ( N + 1 ) - 1 ) ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( ( # ` p ) = ( N + 1 ) -> ( ( # ` f ) = ( ( # ` p ) - 1 ) <-> ( # ` f ) = ( ( N + 1 ) - 1 ) ) ) | 
						
							| 13 |  | simpr |  |-  ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( # ` f ) = ( ( N + 1 ) - 1 ) ) | 
						
							| 14 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 15 |  | pncan1 |  |-  ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 16 | 14 15 | syl |  |-  ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 17 | 16 | adantr |  |-  ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 18 | 13 17 | eqtrd |  |-  ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( # ` f ) = N ) | 
						
							| 19 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 20 | 19 | adantr |  |-  ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> N =/= 0 ) | 
						
							| 21 | 18 20 | eqnetrd |  |-  ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( # ` f ) =/= 0 ) | 
						
							| 22 |  | spthonepeq |  |-  ( f ( X ( SPathsOn ` G ) Y ) p -> ( X = Y <-> ( # ` f ) = 0 ) ) | 
						
							| 23 | 22 | necon3bid |  |-  ( f ( X ( SPathsOn ` G ) Y ) p -> ( X =/= Y <-> ( # ` f ) =/= 0 ) ) | 
						
							| 24 | 21 23 | syl5ibrcom |  |-  ( ( N e. NN /\ ( # ` f ) = ( ( N + 1 ) - 1 ) ) -> ( f ( X ( SPathsOn ` G ) Y ) p -> X =/= Y ) ) | 
						
							| 25 | 24 | expcom |  |-  ( ( # ` f ) = ( ( N + 1 ) - 1 ) -> ( N e. NN -> ( f ( X ( SPathsOn ` G ) Y ) p -> X =/= Y ) ) ) | 
						
							| 26 | 25 | com23 |  |-  ( ( # ` f ) = ( ( N + 1 ) - 1 ) -> ( f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) | 
						
							| 27 | 12 26 | biimtrdi |  |-  ( ( # ` p ) = ( N + 1 ) -> ( ( # ` f ) = ( ( # ` p ) - 1 ) -> ( f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) | 
						
							| 28 | 27 | com13 |  |-  ( f ( X ( SPathsOn ` G ) Y ) p -> ( ( # ` f ) = ( ( # ` p ) - 1 ) -> ( ( # ` p ) = ( N + 1 ) -> ( N e. NN -> X =/= Y ) ) ) ) | 
						
							| 29 | 10 28 | mpd |  |-  ( f ( X ( SPathsOn ` G ) Y ) p -> ( ( # ` p ) = ( N + 1 ) -> ( N e. NN -> X =/= Y ) ) ) | 
						
							| 30 | 29 | exlimiv |  |-  ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( ( # ` p ) = ( N + 1 ) -> ( N e. NN -> X =/= Y ) ) ) | 
						
							| 31 | 30 | com12 |  |-  ( ( # ` p ) = ( N + 1 ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( p e. ( WWalks ` G ) /\ ( # ` p ) = ( N + 1 ) ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) | 
						
							| 33 | 5 32 | biimtrdi |  |-  ( N e. NN0 -> ( p e. ( N WWalksN G ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( N e. NN0 /\ G e. _V ) -> ( p e. ( N WWalksN G ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( p e. ( N WWalksN G ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) | 
						
							| 36 | 35 | com12 |  |-  ( p e. ( N WWalksN G ) -> ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) | 
						
							| 37 | 36 | 3ad2ant1 |  |-  ( ( p e. ( N WWalksN G ) /\ ( p ` 0 ) = X /\ ( p ` N ) = Y ) -> ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) | 
						
							| 38 | 37 | com12 |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( ( p e. ( N WWalksN G ) /\ ( p ` 0 ) = X /\ ( p ` N ) = Y ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) | 
						
							| 39 | 4 38 | biimtrid |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( p e. ( X ( N WWalksNOn G ) Y ) -> ( E. f f ( X ( SPathsOn ` G ) Y ) p -> ( N e. NN -> X =/= Y ) ) ) ) | 
						
							| 40 | 39 | impd |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) ) -> ( ( p e. ( X ( N WWalksNOn G ) Y ) /\ E. f f ( X ( SPathsOn ` G ) Y ) p ) -> ( N e. NN -> X =/= Y ) ) ) | 
						
							| 41 | 40 | 3impia |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( X e. ( Vtx ` G ) /\ Y e. ( Vtx ` G ) ) /\ ( p e. ( X ( N WWalksNOn G ) Y ) /\ E. f f ( X ( SPathsOn ` G ) Y ) p ) ) -> ( N e. NN -> X =/= Y ) ) | 
						
							| 42 | 3 41 | syl |  |-  ( p e. ( X ( N WSPathsNOn G ) Y ) -> ( N e. NN -> X =/= Y ) ) | 
						
							| 43 | 42 | exlimiv |  |-  ( E. p p e. ( X ( N WSPathsNOn G ) Y ) -> ( N e. NN -> X =/= Y ) ) | 
						
							| 44 | 1 43 | sylbi |  |-  ( ( X ( N WSPathsNOn G ) Y ) =/= (/) -> ( N e. NN -> X =/= Y ) ) | 
						
							| 45 | 44 | impcom |  |-  ( ( N e. NN /\ ( X ( N WSPathsNOn G ) Y ) =/= (/) ) -> X =/= Y ) |