| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 2 | wspthnonp |  | 
						
							| 4 |  | wwlknon |  | 
						
							| 5 |  | iswwlksn |  | 
						
							| 6 |  | spthonisspth |  | 
						
							| 7 |  | spthispth |  | 
						
							| 8 |  | pthiswlk |  | 
						
							| 9 |  | wlklenvm1 |  | 
						
							| 10 | 6 7 8 9 | 4syl |  | 
						
							| 11 |  | oveq1 |  | 
						
							| 12 | 11 | eqeq2d |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 |  | nncn |  | 
						
							| 15 |  | pncan1 |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 13 17 | eqtrd |  | 
						
							| 19 |  | nnne0 |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 18 20 | eqnetrd |  | 
						
							| 22 |  | spthonepeq |  | 
						
							| 23 | 22 | necon3bid |  | 
						
							| 24 | 21 23 | syl5ibrcom |  | 
						
							| 25 | 24 | expcom |  | 
						
							| 26 | 25 | com23 |  | 
						
							| 27 | 12 26 | biimtrdi |  | 
						
							| 28 | 27 | com13 |  | 
						
							| 29 | 10 28 | mpd |  | 
						
							| 30 | 29 | exlimiv |  | 
						
							| 31 | 30 | com12 |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 | 5 32 | biimtrdi |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 | 35 | com12 |  | 
						
							| 37 | 36 | 3ad2ant1 |  | 
						
							| 38 | 37 | com12 |  | 
						
							| 39 | 4 38 | biimtrid |  | 
						
							| 40 | 39 | impd |  | 
						
							| 41 | 40 | 3impia |  | 
						
							| 42 | 3 41 | syl |  | 
						
							| 43 | 42 | exlimiv |  | 
						
							| 44 | 1 43 | sylbi |  | 
						
							| 45 | 44 | impcom |  |