Metamath Proof Explorer


Theorem wwlknon

Description: An element of the set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018) (Revised by AV, 12-May-2021) (Revised by AV, 14-Mar-2022)

Ref Expression
Assertion wwlknon WANWWalksNOnGBWNWWalksNGW0=AWN=B

Proof

Step Hyp Ref Expression
1 fveq1 w=Ww0=W0
2 1 eqeq1d w=Ww0=AW0=A
3 fveq1 w=WwN=WN
4 3 eqeq1d w=WwN=BWN=B
5 2 4 anbi12d w=Ww0=AwN=BW0=AWN=B
6 eqid VtxG=VtxG
7 6 iswwlksnon ANWWalksNOnGB=wNWWalksNG|w0=AwN=B
8 5 7 elrab2 WANWWalksNOnGBWNWWalksNGW0=AWN=B
9 3anass WNWWalksNGW0=AWN=BWNWWalksNGW0=AWN=B
10 8 9 bitr4i WANWWalksNOnGBWNWWalksNGW0=AWN=B