| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq1 |  |-  ( w = W -> ( w ` 0 ) = ( W ` 0 ) ) | 
						
							| 2 | 1 | eqeq1d |  |-  ( w = W -> ( ( w ` 0 ) = A <-> ( W ` 0 ) = A ) ) | 
						
							| 3 |  | fveq1 |  |-  ( w = W -> ( w ` N ) = ( W ` N ) ) | 
						
							| 4 | 3 | eqeq1d |  |-  ( w = W -> ( ( w ` N ) = B <-> ( W ` N ) = B ) ) | 
						
							| 5 | 2 4 | anbi12d |  |-  ( w = W -> ( ( ( w ` 0 ) = A /\ ( w ` N ) = B ) <-> ( ( W ` 0 ) = A /\ ( W ` N ) = B ) ) ) | 
						
							| 6 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 7 | 6 | iswwlksnon |  |-  ( A ( N WWalksNOn G ) B ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } | 
						
							| 8 | 5 7 | elrab2 |  |-  ( W e. ( A ( N WWalksNOn G ) B ) <-> ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = A /\ ( W ` N ) = B ) ) ) | 
						
							| 9 |  | 3anass |  |-  ( ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = A /\ ( W ` N ) = B ) <-> ( W e. ( N WWalksN G ) /\ ( ( W ` 0 ) = A /\ ( W ` N ) = B ) ) ) | 
						
							| 10 | 8 9 | bitr4i |  |-  ( W e. ( A ( N WWalksNOn G ) B ) <-> ( W e. ( N WWalksN G ) /\ ( W ` 0 ) = A /\ ( W ` N ) = B ) ) |