Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
2 |
1
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 0 ) = 𝐴 ↔ ( 𝑊 ‘ 0 ) = 𝐴 ) ) |
3 |
|
fveq1 |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 𝑁 ) = ( 𝑊 ‘ 𝑁 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 𝑁 ) = 𝐵 ↔ ( 𝑊 ‘ 𝑁 ) = 𝐵 ) ) |
5 |
2 4
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) ↔ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 𝑁 ) = 𝐵 ) ) ) |
6 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
7 |
6
|
iswwlksnon |
⊢ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } |
8 |
5 7
|
elrab2 |
⊢ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 𝑁 ) = 𝐵 ) ) ) |
9 |
|
3anass |
⊢ ( ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 𝑁 ) = 𝐵 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 𝑁 ) = 𝐵 ) ) ) |
10 |
8 9
|
bitr4i |
⊢ ( 𝑊 ∈ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 𝑁 ) = 𝐵 ) ) |