| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 | ⊢ ( ( 𝑋 ( 𝑁  WSPathsNOn  𝐺 ) 𝑌 )  ≠  ∅  ↔  ∃ 𝑝 𝑝  ∈  ( 𝑋 ( 𝑁  WSPathsNOn  𝐺 ) 𝑌 ) ) | 
						
							| 2 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 2 | wspthnonp | ⊢ ( 𝑝  ∈  ( 𝑋 ( 𝑁  WSPathsNOn  𝐺 ) 𝑌 )  →  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑌  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑝  ∈  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑌 )  ∧  ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 ) ) ) | 
						
							| 4 |  | wwlknon | ⊢ ( 𝑝  ∈  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑌 )  ↔  ( 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑝 ‘ 0 )  =  𝑋  ∧  ( 𝑝 ‘ 𝑁 )  =  𝑌 ) ) | 
						
							| 5 |  | iswwlksn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( 𝑝  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑝 )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 6 |  | spthonisspth | ⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  𝑓 ( SPaths ‘ 𝐺 ) 𝑝 ) | 
						
							| 7 |  | spthispth | ⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  →  𝑓 ( Paths ‘ 𝐺 ) 𝑝 ) | 
						
							| 8 |  | pthiswlk | ⊢ ( 𝑓 ( Paths ‘ 𝐺 ) 𝑝  →  𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) | 
						
							| 9 |  | wlklenvm1 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑝 )  −  1 ) ) | 
						
							| 10 | 6 7 8 9 | 4syl | ⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑝 )  −  1 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑝 )  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ 𝑝 )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 12 | 11 | eqeq2d | ⊢ ( ( ♯ ‘ 𝑝 )  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑝 )  −  1 )  ↔  ( ♯ ‘ 𝑓 )  =  ( ( 𝑁  +  1 )  −  1 ) ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑓 )  =  ( ( 𝑁  +  1 )  −  1 ) )  →  ( ♯ ‘ 𝑓 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 14 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 15 |  | pncan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑓 )  =  ( ( 𝑁  +  1 )  −  1 ) )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 18 | 13 17 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑓 )  =  ( ( 𝑁  +  1 )  −  1 ) )  →  ( ♯ ‘ 𝑓 )  =  𝑁 ) | 
						
							| 19 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑓 )  =  ( ( 𝑁  +  1 )  −  1 ) )  →  𝑁  ≠  0 ) | 
						
							| 21 | 18 20 | eqnetrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑓 )  =  ( ( 𝑁  +  1 )  −  1 ) )  →  ( ♯ ‘ 𝑓 )  ≠  0 ) | 
						
							| 22 |  | spthonepeq | ⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑋  =  𝑌  ↔  ( ♯ ‘ 𝑓 )  =  0 ) ) | 
						
							| 23 | 22 | necon3bid | ⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑋  ≠  𝑌  ↔  ( ♯ ‘ 𝑓 )  ≠  0 ) ) | 
						
							| 24 | 21 23 | syl5ibrcom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑓 )  =  ( ( 𝑁  +  1 )  −  1 ) )  →  ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  𝑋  ≠  𝑌 ) ) | 
						
							| 25 | 24 | expcom | ⊢ ( ( ♯ ‘ 𝑓 )  =  ( ( 𝑁  +  1 )  −  1 )  →  ( 𝑁  ∈  ℕ  →  ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  𝑋  ≠  𝑌 ) ) ) | 
						
							| 26 | 25 | com23 | ⊢ ( ( ♯ ‘ 𝑓 )  =  ( ( 𝑁  +  1 )  −  1 )  →  ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) | 
						
							| 27 | 12 26 | biimtrdi | ⊢ ( ( ♯ ‘ 𝑝 )  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑝 )  −  1 )  →  ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) ) | 
						
							| 28 | 27 | com13 | ⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑝 )  −  1 )  →  ( ( ♯ ‘ 𝑝 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) ) | 
						
							| 29 | 10 28 | mpd | ⊢ ( 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( ( ♯ ‘ 𝑝 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) | 
						
							| 30 | 29 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( ( ♯ ‘ 𝑝 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) | 
						
							| 31 | 30 | com12 | ⊢ ( ( ♯ ‘ 𝑝 )  =  ( 𝑁  +  1 )  →  ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝑝  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑝 )  =  ( 𝑁  +  1 ) )  →  ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) | 
						
							| 33 | 5 32 | biimtrdi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑌  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑌  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) ) | 
						
							| 37 | 36 | 3ad2ant1 | ⊢ ( ( 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑝 ‘ 0 )  =  𝑋  ∧  ( 𝑝 ‘ 𝑁 )  =  𝑌 )  →  ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑌  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) ) | 
						
							| 38 | 37 | com12 | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑌  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( ( 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑝 ‘ 0 )  =  𝑋  ∧  ( 𝑝 ‘ 𝑁 )  =  𝑌 )  →  ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) ) | 
						
							| 39 | 4 38 | biimtrid | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑌  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( 𝑝  ∈  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑌 )  →  ( ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) ) | 
						
							| 40 | 39 | impd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑌  ∈  ( Vtx ‘ 𝐺 ) ) )  →  ( ( 𝑝  ∈  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑌 )  ∧  ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 )  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) ) | 
						
							| 41 | 40 | 3impia | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  𝑌  ∈  ( Vtx ‘ 𝐺 ) )  ∧  ( 𝑝  ∈  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑌 )  ∧  ∃ 𝑓 𝑓 ( 𝑋 ( SPathsOn ‘ 𝐺 ) 𝑌 ) 𝑝 ) )  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) | 
						
							| 42 | 3 41 | syl | ⊢ ( 𝑝  ∈  ( 𝑋 ( 𝑁  WSPathsNOn  𝐺 ) 𝑌 )  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) | 
						
							| 43 | 42 | exlimiv | ⊢ ( ∃ 𝑝 𝑝  ∈  ( 𝑋 ( 𝑁  WSPathsNOn  𝐺 ) 𝑌 )  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) | 
						
							| 44 | 1 43 | sylbi | ⊢ ( ( 𝑋 ( 𝑁  WSPathsNOn  𝐺 ) 𝑌 )  ≠  ∅  →  ( 𝑁  ∈  ℕ  →  𝑋  ≠  𝑌 ) ) | 
						
							| 45 | 44 | impcom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑋 ( 𝑁  WSPathsNOn  𝐺 ) 𝑌 )  ≠  ∅ )  →  𝑋  ≠  𝑌 ) |