Metamath Proof Explorer


Theorem spthonisspth

Description: A simple path between to vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 18-Jan-2021)

Ref Expression
Assertion spthonisspth FASPathsOnGBPFSPathsGP

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 spthonprop FASPathsOnGBPGVAVtxGBVtxGFVPVFATrailsOnGBPFSPathsGP
3 simp3r GVAVtxGBVtxGFVPVFATrailsOnGBPFSPathsGPFSPathsGP
4 2 3 syl FASPathsOnGBPFSPathsGP