| Step | Hyp | Ref | Expression | 
						
							| 1 |  | usgr2wspthon0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | usgr2wspthon0.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | usgrupgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UPGraph ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐺  ∈  UPGraph ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  𝐴  ∈  𝑉 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  𝐶  ∈  𝑉 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐶  ∈  𝑉 ) | 
						
							| 9 | 1 | elwspths2on | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝑇  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) | 
						
							| 10 | 4 6 8 9 | syl3anc | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝑇  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) ) ) ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐺  ∈  USGraph ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  𝑏  ∈  𝑉 )  →  𝐺  ∈  USGraph ) | 
						
							| 13 |  | simplrl | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  𝑏  ∈  𝑉 )  →  𝐴  ∈  𝑉 ) | 
						
							| 14 |  | simpr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  𝑏  ∈  𝑉 )  →  𝑏  ∈  𝑉 ) | 
						
							| 15 |  | simplrr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  𝑏  ∈  𝑉 )  →  𝐶  ∈  𝑉 ) | 
						
							| 16 | 1 2 | usgr2wspthons3 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  ( 𝐴  ≠  𝐶  ∧  { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 17 | 12 13 14 15 16 | syl13anc | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  𝑏  ∈  𝑉 )  →  ( 〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  ( 𝐴  ≠  𝐶  ∧  { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 18 | 17 | anbi2d | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  𝑏  ∈  𝑉 )  →  ( ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  ↔  ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ( 𝐴  ≠  𝐶  ∧  { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) ) | 
						
							| 19 |  | anass | ⊢ ( ( ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  𝐴  ≠  𝐶 )  ∧  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) )  ↔  ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ( 𝐴  ≠  𝐶  ∧  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) ) | 
						
							| 20 |  | 3anass | ⊢ ( ( 𝐴  ≠  𝐶  ∧  { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 )  ↔  ( 𝐴  ≠  𝐶  ∧  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 21 | 20 | bicomi | ⊢ ( ( 𝐴  ≠  𝐶  ∧  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) )  ↔  ( 𝐴  ≠  𝐶  ∧  { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 22 | 21 | anbi2i | ⊢ ( ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ( 𝐴  ≠  𝐶  ∧  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) )  ↔  ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ( 𝐴  ≠  𝐶  ∧  { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 23 | 19 22 | bitri | ⊢ ( ( ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  𝐴  ≠  𝐶 )  ∧  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) )  ↔  ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  ( 𝐴  ≠  𝐶  ∧  { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 24 | 18 23 | bitr4di | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  𝑏  ∈  𝑉 )  →  ( ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  ↔  ( ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  𝐴  ≠  𝐶 )  ∧  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) ) | 
						
							| 25 | 24 | rexbidva | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ∃ 𝑏  ∈  𝑉 ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  〈“ 𝐴 𝑏 𝐶 ”〉  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 ) )  ↔  ∃ 𝑏  ∈  𝑉 ( ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  𝐴  ≠  𝐶 )  ∧  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) ) | 
						
							| 26 | 10 25 | bitrd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝑇  ∈  ( 𝐴 ( 2  WSPathsNOn  𝐺 ) 𝐶 )  ↔  ∃ 𝑏  ∈  𝑉 ( ( 𝑇  =  〈“ 𝐴 𝑏 𝐶 ”〉  ∧  𝐴  ≠  𝐶 )  ∧  ( { 𝐴 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝐶 }  ∈  𝐸 ) ) ) ) |