| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | wwlksnwwlksnon | ⊢ ( 𝑊  ∈  ( 2  WWalksN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝑊  ∈  ( 2  WWalksN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) ) ) | 
						
							| 4 | 1 | elwwlks2on | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) | 
						
							| 5 | 4 | 3expb | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑊  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) | 
						
							| 6 | 5 | 2rexbidva | ⊢ ( 𝐺  ∈  UPGraph  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) | 
						
							| 7 |  | rexcom | ⊢ ( ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  ↔  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 8 |  | s3cli | ⊢ 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  V | 
						
							| 9 | 8 | a1i | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  V ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 12 | 10 11 | eqtr4d | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  𝑊  =  𝑝 ) | 
						
							| 13 | 12 | breq2d | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ↔  𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ) | 
						
							| 14 | 13 | biimpd | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  →  𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ) | 
						
							| 15 | 14 | com12 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  →  ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) ) | 
						
							| 17 | 16 | impcom | ⊢ ( ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) | 
						
							| 18 |  | simprr | ⊢ ( ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( ♯ ‘ 𝑓 )  =  2 ) | 
						
							| 19 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 20 |  | s3fv0 | ⊢ ( 𝑎  ∈  V  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎 ) | 
						
							| 21 | 20 | eqcomd | ⊢ ( 𝑎  ∈  V  →  𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ) | 
						
							| 22 | 19 21 | mp1i | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ) | 
						
							| 23 |  | fveq1 | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑝 ‘ 0 )  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ) | 
						
							| 24 | 22 23 | eqtr4d | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑎  =  ( 𝑝 ‘ 0 ) ) | 
						
							| 25 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 26 |  | s3fv1 | ⊢ ( 𝑏  ∈  V  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  =  𝑏 ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( 𝑏  ∈  V  →  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ) | 
						
							| 28 | 25 27 | mp1i | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ) | 
						
							| 29 |  | fveq1 | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑝 ‘ 1 )  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ) | 
						
							| 30 | 28 29 | eqtr4d | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑏  =  ( 𝑝 ‘ 1 ) ) | 
						
							| 31 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 32 |  | s3fv2 | ⊢ ( 𝑐  ∈  V  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) | 
						
							| 33 | 32 | eqcomd | ⊢ ( 𝑐  ∈  V  →  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) | 
						
							| 34 | 31 33 | mp1i | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) | 
						
							| 35 |  | fveq1 | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑝 ‘ 2 )  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) | 
						
							| 36 | 34 35 | eqtr4d | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑐  =  ( 𝑝 ‘ 2 ) ) | 
						
							| 37 | 24 30 36 | 3jca | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 40 | 17 18 39 | 3jca | ⊢ ( ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) | 
						
							| 41 | 40 | ex | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 42 | 9 41 | spcimedv | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 43 |  | wlklenvp1 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) ) | 
						
							| 44 |  | simpl | ⊢ ( ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) ) | 
						
							| 45 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( ♯ ‘ 𝑓 )  +  1 )  =  ( 2  +  1 ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ( ♯ ‘ 𝑓 )  +  1 )  =  ( 2  +  1 ) ) | 
						
							| 47 | 44 46 | eqtrd | ⊢ ( ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ♯ ‘ 𝑝 )  =  ( 2  +  1 ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( ♯ ‘ 𝑝 )  =  ( 2  +  1 ) ) | 
						
							| 49 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 50 | 48 49 | eqtrdi | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  →  ( ♯ ‘ 𝑝 )  =  3 ) | 
						
							| 51 | 50 | exp32 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ♯ ‘ 𝑝 )  =  3 ) ) ) | 
						
							| 52 | 43 51 | mpd | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ♯ ‘ 𝑝 )  =  3 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ♯ ‘ 𝑝 )  =  3 ) ) | 
						
							| 54 | 53 | imp | ⊢ ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ♯ ‘ 𝑝 )  =  3 ) | 
						
							| 55 |  | eqcom | ⊢ ( 𝑎  =  ( 𝑝 ‘ 0 )  ↔  ( 𝑝 ‘ 0 )  =  𝑎 ) | 
						
							| 56 | 55 | biimpi | ⊢ ( 𝑎  =  ( 𝑝 ‘ 0 )  →  ( 𝑝 ‘ 0 )  =  𝑎 ) | 
						
							| 57 |  | eqcom | ⊢ ( 𝑏  =  ( 𝑝 ‘ 1 )  ↔  ( 𝑝 ‘ 1 )  =  𝑏 ) | 
						
							| 58 | 57 | biimpi | ⊢ ( 𝑏  =  ( 𝑝 ‘ 1 )  →  ( 𝑝 ‘ 1 )  =  𝑏 ) | 
						
							| 59 |  | eqcom | ⊢ ( 𝑐  =  ( 𝑝 ‘ 2 )  ↔  ( 𝑝 ‘ 2 )  =  𝑐 ) | 
						
							| 60 | 59 | biimpi | ⊢ ( 𝑐  =  ( 𝑝 ‘ 2 )  →  ( 𝑝 ‘ 2 )  =  𝑐 ) | 
						
							| 61 | 56 58 60 | 3anim123i | ⊢ ( ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) )  →  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) | 
						
							| 62 | 54 61 | anim12i | ⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) ) | 
						
							| 63 | 1 | wlkpwrd | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑝  ∈  Word  𝑉 ) | 
						
							| 64 |  | simpr | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  →  𝑎  ∈  𝑉 ) | 
						
							| 65 | 64 | anim1i | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑎  ∈  𝑉  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) ) | 
						
							| 66 |  | 3anass | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  ↔  ( 𝑎  ∈  𝑉  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) ) | 
						
							| 67 | 65 66 | sylibr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) | 
						
							| 69 | 63 68 | anim12i | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  →  ( 𝑝  ∈  Word  𝑉  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) ) | 
						
							| 70 | 69 | ad2antrr | ⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑝  ∈  Word  𝑉  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) ) | 
						
							| 71 |  | eqwrds3 | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 72 | 70 71 | syl | ⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 73 | 62 72 | mpbird | ⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 74 |  | simprr | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  →  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 75 | 74 | ad2antrr | ⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 76 | 73 75 | eqtr4d | ⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  𝑝  =  𝑊 ) | 
						
							| 77 | 76 | breq2d | ⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ↔  𝑓 ( Walks ‘ 𝐺 ) 𝑊 ) ) | 
						
							| 78 | 77 | biimpd | ⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑓 ( Walks ‘ 𝐺 ) 𝑊 ) ) | 
						
							| 79 |  | simplr | ⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ♯ ‘ 𝑓 )  =  2 ) | 
						
							| 80 | 78 79 | jctird | ⊢ ( ( ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) )  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 81 | 80 | exp41 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) ) ) | 
						
							| 82 | 81 | com25 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) )  →  ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) ) ) | 
						
							| 83 | 82 | pm2.43i | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) )  →  ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) ) | 
						
							| 84 | 83 | 3imp | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 85 | 84 | com12 | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 86 | 85 | exlimdv | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 87 | 42 86 | impbid | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ↔  ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 88 | 87 | exbidv | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ↔  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 89 | 88 | pm5.32da | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  ↔  ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) ) | 
						
							| 90 | 89 | 2rexbidva | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  →  ( ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  ↔  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) ) | 
						
							| 91 | 7 90 | bitrid | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  →  ( ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  ↔  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) ) | 
						
							| 92 | 91 | rexbidva | ⊢ ( 𝐺  ∈  UPGraph  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  ∧  ( ♯ ‘ 𝑓 )  =  2 ) )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) ) | 
						
							| 93 | 3 6 92 | 3bitrd | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝑊  ∈  ( 2  WWalksN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) ) |