| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnwwlksnon.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlknbp1 | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 3 | 1 | eqcomi | ⊢ ( Vtx ‘ 𝐺 )  =  𝑉 | 
						
							| 4 | 3 | wrdeqi | ⊢ Word  ( Vtx ‘ 𝐺 )  =  Word  𝑉 | 
						
							| 5 | 4 | eleq2i | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ↔  𝑊  ∈  Word  𝑉 ) | 
						
							| 6 | 5 | biimpi | ⊢ ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 8 |  | nn0p1nn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 9 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ ( 𝑁  +  1 ) )  ↔  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( 𝑁  ∈  ℕ0  →  0  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  0  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  0  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  0  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) ) | 
						
							| 15 | 11 14 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 17 |  | wrdsymbcl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) | 
						
							| 18 | 7 16 17 | syl2an2 | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) )  →  ( 𝑊 ‘ 0 )  ∈  𝑉 ) | 
						
							| 19 |  | fzonn0p1 | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  𝑁  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 21 | 12 | eleq2d | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  𝑁  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) ) | 
						
							| 22 | 21 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  𝑁  ∈  ( 0 ..^ ( 𝑁  +  1 ) ) ) ) | 
						
							| 23 | 20 22 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 24 |  | wrdsymbcl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝑁 )  ∈  𝑉 ) | 
						
							| 25 | 7 23 24 | syl2anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( 𝑊 ‘ 𝑁 )  ∈  𝑉 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) )  →  ( 𝑊 ‘ 𝑁 )  ∈  𝑉 ) | 
						
							| 27 |  | simpl | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) )  →  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 28 |  | eqidd | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) )  →  ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 29 |  | eqidd | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) )  →  ( 𝑊 ‘ 𝑁 )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 30 |  | eqeq2 | ⊢ ( 𝑎  =  ( 𝑊 ‘ 0 )  →  ( ( 𝑊 ‘ 0 )  =  𝑎  ↔  ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) ) | 
						
							| 31 | 30 | 3anbi2d | ⊢ ( 𝑎  =  ( 𝑊 ‘ 0 )  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 ) ) ) | 
						
							| 32 |  | eqeq2 | ⊢ ( 𝑏  =  ( 𝑊 ‘ 𝑁 )  →  ( ( 𝑊 ‘ 𝑁 )  =  𝑏  ↔  ( 𝑊 ‘ 𝑁 )  =  ( 𝑊 ‘ 𝑁 ) ) ) | 
						
							| 33 | 32 | 3anbi3d | ⊢ ( 𝑏  =  ( 𝑊 ‘ 𝑁 )  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 𝑁 )  =  ( 𝑊 ‘ 𝑁 ) ) ) ) | 
						
							| 34 | 31 33 | rspc2ev | ⊢ ( ( ( 𝑊 ‘ 0 )  ∈  𝑉  ∧  ( 𝑊 ‘ 𝑁 )  ∈  𝑉  ∧  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  ( 𝑊 ‘ 0 )  ∧  ( 𝑊 ‘ 𝑁 )  =  ( 𝑊 ‘ 𝑁 ) ) )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 ) ) | 
						
							| 35 | 18 26 27 28 29 34 | syl113anc | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 ) ) | 
						
							| 36 | 2 35 | mpdan | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 ) ) | 
						
							| 37 |  | simp1 | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  →  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 38 | 37 | a1i | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  →  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) ) ) | 
						
							| 39 | 38 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  →  𝑊  ∈  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 40 | 36 39 | impbii | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 ) ) | 
						
							| 41 |  | wwlknon | ⊢ ( 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 ) ) | 
						
							| 42 | 41 | bicomi | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ↔  𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) ) | 
						
							| 43 | 42 | 2rexbii | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) ) | 
						
							| 44 | 40 43 | bitri | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) ) |