| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnwwlksnon.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | iswspthn | ⊢ ( 𝑊  ∈  ( 𝑁  WSPathsN  𝐺 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) | 
						
							| 3 | 1 | wwlksnwwlksnon | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) ) | 
						
							| 4 | 3 | anbi1i | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 )  ↔  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) | 
						
							| 5 |  | r19.41vv | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 )  ↔  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) | 
						
							| 6 | 4 5 | bitr4i | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) ) | 
						
							| 7 |  | 3anass | ⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 )  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 )  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) ) ) | 
						
							| 9 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 10 | 1 | isspthonpth | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  ( 𝑓  ∈  V  ∧  𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) ) )  →  ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) ) | 
						
							| 11 | 9 10 | mpanr1 | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) )  →  ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) ) | 
						
							| 12 |  | spthiswlk | ⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  →  𝑓 ( Walks ‘ 𝐺 ) 𝑊 ) | 
						
							| 13 |  | wlklenvm1 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑊  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 14 |  | wwlknon | ⊢ ( 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ↔  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 ) ) | 
						
							| 15 |  | simpl2 | ⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( 𝑊 ‘ 0 )  =  𝑎 ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 17 |  | wwlknbp1 | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 19 | 18 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 20 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 21 |  | pncan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 24 | 19 23 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  𝑁 ) | 
						
							| 25 | 17 24 | syl | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  𝑁 ) | 
						
							| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  𝑁 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  =  𝑁 ) | 
						
							| 28 | 16 27 | eqtrd | ⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( ♯ ‘ 𝑓 )  =  𝑁 ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 30 |  | simpl3 | ⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( 𝑊 ‘ 𝑁 )  =  𝑏 ) | 
						
							| 31 | 29 30 | eqtrd | ⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) | 
						
							| 32 | 15 31 | jca | ⊢ ( ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  ∧  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) | 
						
							| 33 | 32 | ex | ⊢ ( ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ 𝑁 )  =  𝑏 )  →  ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 )  →  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) ) | 
						
							| 34 | 14 33 | sylbi | ⊢ ( 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  →  ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 )  →  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) )  →  ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 )  →  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 𝑊 )  −  1 )  →  ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) )  →  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) ) | 
						
							| 37 | 12 13 36 | 3syl | ⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  →  ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) )  →  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) ) | 
						
							| 38 | 37 | com12 | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) )  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  →  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) ) | 
						
							| 39 | 38 | pm4.71d | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) )  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  ∧  ( ( 𝑊 ‘ 0 )  =  𝑎  ∧  ( 𝑊 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑏 ) ) ) ) | 
						
							| 40 | 8 11 39 | 3bitr4rd | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) )  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  ↔  𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊 ) ) | 
						
							| 41 | 40 | exbidv | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) )  →  ( ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊  ↔  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊 ) ) | 
						
							| 42 | 41 | pm5.32da | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( ( 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 )  ↔  ( 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∧  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊 ) ) ) | 
						
							| 43 |  | wspthnon | ⊢ ( 𝑊  ∈  ( 𝑎 ( 𝑁  WSPathsNOn  𝐺 ) 𝑏 )  ↔  ( 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∧  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑊 ) ) | 
						
							| 44 | 42 43 | bitr4di | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  →  ( ( 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 )  ↔  𝑊  ∈  ( 𝑎 ( 𝑁  WSPathsNOn  𝐺 ) 𝑏 ) ) ) | 
						
							| 45 | 44 | 2rexbiia | ⊢ ( ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∧  ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 𝑁  WSPathsNOn  𝐺 ) 𝑏 ) ) | 
						
							| 46 | 2 6 45 | 3bitri | ⊢ ( 𝑊  ∈  ( 𝑁  WSPathsN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 𝑁  WSPathsNOn  𝐺 ) 𝑏 ) ) |