| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | wwlksnwwlksnon |  |-  ( W e. ( 2 WWalksN G ) <-> E. a e. V E. c e. V W e. ( a ( 2 WWalksNOn G ) c ) ) | 
						
							| 3 | 2 | a1i |  |-  ( G e. UPGraph -> ( W e. ( 2 WWalksN G ) <-> E. a e. V E. c e. V W e. ( a ( 2 WWalksNOn G ) c ) ) ) | 
						
							| 4 | 1 | elwwlks2on |  |-  ( ( G e. UPGraph /\ a e. V /\ c e. V ) -> ( W e. ( a ( 2 WWalksNOn G ) c ) <-> E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) | 
						
							| 5 | 4 | 3expb |  |-  ( ( G e. UPGraph /\ ( a e. V /\ c e. V ) ) -> ( W e. ( a ( 2 WWalksNOn G ) c ) <-> E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) | 
						
							| 6 | 5 | 2rexbidva |  |-  ( G e. UPGraph -> ( E. a e. V E. c e. V W e. ( a ( 2 WWalksNOn G ) c ) <-> E. a e. V E. c e. V E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) | 
						
							| 7 |  | rexcom |  |-  ( E. c e. V E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) <-> E. b e. V E. c e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) | 
						
							| 8 |  | s3cli |  |-  <" a b c "> e. Word _V | 
						
							| 9 | 8 | a1i |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> <" a b c "> e. Word _V ) | 
						
							| 10 |  | simplr |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> W = <" a b c "> ) | 
						
							| 11 |  | simpr |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> p = <" a b c "> ) | 
						
							| 12 | 10 11 | eqtr4d |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> W = p ) | 
						
							| 13 | 12 | breq2d |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> ( f ( Walks ` G ) W <-> f ( Walks ` G ) p ) ) | 
						
							| 14 | 13 | biimpd |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> ( f ( Walks ` G ) W -> f ( Walks ` G ) p ) ) | 
						
							| 15 | 14 | com12 |  |-  ( f ( Walks ` G ) W -> ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> f ( Walks ` G ) p ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) -> ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> f ( Walks ` G ) p ) ) | 
						
							| 17 | 16 | impcom |  |-  ( ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) /\ ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> f ( Walks ` G ) p ) | 
						
							| 18 |  | simprr |  |-  ( ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) /\ ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( # ` f ) = 2 ) | 
						
							| 19 |  | vex |  |-  a e. _V | 
						
							| 20 |  | s3fv0 |  |-  ( a e. _V -> ( <" a b c "> ` 0 ) = a ) | 
						
							| 21 | 20 | eqcomd |  |-  ( a e. _V -> a = ( <" a b c "> ` 0 ) ) | 
						
							| 22 | 19 21 | mp1i |  |-  ( p = <" a b c "> -> a = ( <" a b c "> ` 0 ) ) | 
						
							| 23 |  | fveq1 |  |-  ( p = <" a b c "> -> ( p ` 0 ) = ( <" a b c "> ` 0 ) ) | 
						
							| 24 | 22 23 | eqtr4d |  |-  ( p = <" a b c "> -> a = ( p ` 0 ) ) | 
						
							| 25 |  | vex |  |-  b e. _V | 
						
							| 26 |  | s3fv1 |  |-  ( b e. _V -> ( <" a b c "> ` 1 ) = b ) | 
						
							| 27 | 26 | eqcomd |  |-  ( b e. _V -> b = ( <" a b c "> ` 1 ) ) | 
						
							| 28 | 25 27 | mp1i |  |-  ( p = <" a b c "> -> b = ( <" a b c "> ` 1 ) ) | 
						
							| 29 |  | fveq1 |  |-  ( p = <" a b c "> -> ( p ` 1 ) = ( <" a b c "> ` 1 ) ) | 
						
							| 30 | 28 29 | eqtr4d |  |-  ( p = <" a b c "> -> b = ( p ` 1 ) ) | 
						
							| 31 |  | vex |  |-  c e. _V | 
						
							| 32 |  | s3fv2 |  |-  ( c e. _V -> ( <" a b c "> ` 2 ) = c ) | 
						
							| 33 | 32 | eqcomd |  |-  ( c e. _V -> c = ( <" a b c "> ` 2 ) ) | 
						
							| 34 | 31 33 | mp1i |  |-  ( p = <" a b c "> -> c = ( <" a b c "> ` 2 ) ) | 
						
							| 35 |  | fveq1 |  |-  ( p = <" a b c "> -> ( p ` 2 ) = ( <" a b c "> ` 2 ) ) | 
						
							| 36 | 34 35 | eqtr4d |  |-  ( p = <" a b c "> -> c = ( p ` 2 ) ) | 
						
							| 37 | 24 30 36 | 3jca |  |-  ( p = <" a b c "> -> ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) /\ ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) | 
						
							| 40 | 17 18 39 | 3jca |  |-  ( ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) /\ ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) -> ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) | 
						
							| 41 | 40 | ex |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) /\ p = <" a b c "> ) -> ( ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) -> ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 42 | 9 41 | spcimedv |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) -> E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 43 |  | wlklenvp1 |  |-  ( f ( Walks ` G ) p -> ( # ` p ) = ( ( # ` f ) + 1 ) ) | 
						
							| 44 |  | simpl |  |-  ( ( ( # ` p ) = ( ( # ` f ) + 1 ) /\ ( # ` f ) = 2 ) -> ( # ` p ) = ( ( # ` f ) + 1 ) ) | 
						
							| 45 |  | oveq1 |  |-  ( ( # ` f ) = 2 -> ( ( # ` f ) + 1 ) = ( 2 + 1 ) ) | 
						
							| 46 | 45 | adantl |  |-  ( ( ( # ` p ) = ( ( # ` f ) + 1 ) /\ ( # ` f ) = 2 ) -> ( ( # ` f ) + 1 ) = ( 2 + 1 ) ) | 
						
							| 47 | 44 46 | eqtrd |  |-  ( ( ( # ` p ) = ( ( # ` f ) + 1 ) /\ ( # ` f ) = 2 ) -> ( # ` p ) = ( 2 + 1 ) ) | 
						
							| 48 | 47 | adantl |  |-  ( ( f ( Walks ` G ) p /\ ( ( # ` p ) = ( ( # ` f ) + 1 ) /\ ( # ` f ) = 2 ) ) -> ( # ` p ) = ( 2 + 1 ) ) | 
						
							| 49 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 50 | 48 49 | eqtrdi |  |-  ( ( f ( Walks ` G ) p /\ ( ( # ` p ) = ( ( # ` f ) + 1 ) /\ ( # ` f ) = 2 ) ) -> ( # ` p ) = 3 ) | 
						
							| 51 | 50 | exp32 |  |-  ( f ( Walks ` G ) p -> ( ( # ` p ) = ( ( # ` f ) + 1 ) -> ( ( # ` f ) = 2 -> ( # ` p ) = 3 ) ) ) | 
						
							| 52 | 43 51 | mpd |  |-  ( f ( Walks ` G ) p -> ( ( # ` f ) = 2 -> ( # ` p ) = 3 ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) -> ( ( # ` f ) = 2 -> ( # ` p ) = 3 ) ) | 
						
							| 54 | 53 | imp |  |-  ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) -> ( # ` p ) = 3 ) | 
						
							| 55 |  | eqcom |  |-  ( a = ( p ` 0 ) <-> ( p ` 0 ) = a ) | 
						
							| 56 | 55 | biimpi |  |-  ( a = ( p ` 0 ) -> ( p ` 0 ) = a ) | 
						
							| 57 |  | eqcom |  |-  ( b = ( p ` 1 ) <-> ( p ` 1 ) = b ) | 
						
							| 58 | 57 | biimpi |  |-  ( b = ( p ` 1 ) -> ( p ` 1 ) = b ) | 
						
							| 59 |  | eqcom |  |-  ( c = ( p ` 2 ) <-> ( p ` 2 ) = c ) | 
						
							| 60 | 59 | biimpi |  |-  ( c = ( p ` 2 ) -> ( p ` 2 ) = c ) | 
						
							| 61 | 56 58 60 | 3anim123i |  |-  ( ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) -> ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) | 
						
							| 62 | 54 61 | anim12i |  |-  ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) ) | 
						
							| 63 | 1 | wlkpwrd |  |-  ( f ( Walks ` G ) p -> p e. Word V ) | 
						
							| 64 |  | simpr |  |-  ( ( G e. UPGraph /\ a e. V ) -> a e. V ) | 
						
							| 65 | 64 | anim1i |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( a e. V /\ ( b e. V /\ c e. V ) ) ) | 
						
							| 66 |  | 3anass |  |-  ( ( a e. V /\ b e. V /\ c e. V ) <-> ( a e. V /\ ( b e. V /\ c e. V ) ) ) | 
						
							| 67 | 65 66 | sylibr |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( a e. V /\ b e. V /\ c e. V ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( a e. V /\ b e. V /\ c e. V ) ) | 
						
							| 69 | 63 68 | anim12i |  |-  ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) -> ( p e. Word V /\ ( a e. V /\ b e. V /\ c e. V ) ) ) | 
						
							| 70 | 69 | ad2antrr |  |-  ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( p e. Word V /\ ( a e. V /\ b e. V /\ c e. V ) ) ) | 
						
							| 71 |  | eqwrds3 |  |-  ( ( p e. Word V /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( p = <" a b c "> <-> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) ) ) | 
						
							| 72 | 70 71 | syl |  |-  ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( p = <" a b c "> <-> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) ) ) | 
						
							| 73 | 62 72 | mpbird |  |-  ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> p = <" a b c "> ) | 
						
							| 74 |  | simprr |  |-  ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) -> W = <" a b c "> ) | 
						
							| 75 | 74 | ad2antrr |  |-  ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> W = <" a b c "> ) | 
						
							| 76 | 73 75 | eqtr4d |  |-  ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> p = W ) | 
						
							| 77 | 76 | breq2d |  |-  ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) p <-> f ( Walks ` G ) W ) ) | 
						
							| 78 | 77 | biimpd |  |-  ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) p -> f ( Walks ` G ) W ) ) | 
						
							| 79 |  | simplr |  |-  ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( # ` f ) = 2 ) | 
						
							| 80 | 78 79 | jctird |  |-  ( ( ( ( f ( Walks ` G ) p /\ ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) ) /\ ( # ` f ) = 2 ) /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) p -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) | 
						
							| 81 | 80 | exp41 |  |-  ( f ( Walks ` G ) p -> ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( # ` f ) = 2 -> ( ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) -> ( f ( Walks ` G ) p -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) ) ) | 
						
							| 82 | 81 | com25 |  |-  ( f ( Walks ` G ) p -> ( f ( Walks ` G ) p -> ( ( # ` f ) = 2 -> ( ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) -> ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) ) ) | 
						
							| 83 | 82 | pm2.43i |  |-  ( f ( Walks ` G ) p -> ( ( # ` f ) = 2 -> ( ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) -> ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) ) ) | 
						
							| 84 | 83 | 3imp |  |-  ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) | 
						
							| 85 | 84 | com12 |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) | 
						
							| 86 | 85 | exlimdv |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) ) | 
						
							| 87 | 42 86 | impbid |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) <-> E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 88 | 87 | exbidv |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) <-> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 89 | 88 | pm5.32da |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) <-> ( W = <" a b c "> /\ E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) | 
						
							| 90 | 89 | 2rexbidva |  |-  ( ( G e. UPGraph /\ a e. V ) -> ( E. b e. V E. c e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) <-> E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) | 
						
							| 91 | 7 90 | bitrid |  |-  ( ( G e. UPGraph /\ a e. V ) -> ( E. c e. V E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) <-> E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) | 
						
							| 92 | 91 | rexbidva |  |-  ( G e. UPGraph -> ( E. a e. V E. c e. V E. b e. V ( W = <" a b c "> /\ E. f ( f ( Walks ` G ) W /\ ( # ` f ) = 2 ) ) <-> E. a e. V E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) | 
						
							| 93 | 3 6 92 | 3bitrd |  |-  ( G e. UPGraph -> ( W e. ( 2 WWalksN G ) <-> E. a e. V E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) |