| Step |
Hyp |
Ref |
Expression |
| 1 |
|
s3cl |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> <" A B C "> e. Word V ) |
| 2 |
|
eqwrd |
|- ( ( W e. Word V /\ <" A B C "> e. Word V ) -> ( W = <" A B C "> <-> ( ( # ` W ) = ( # ` <" A B C "> ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) ) ) ) |
| 3 |
1 2
|
sylan2 |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( W = <" A B C "> <-> ( ( # ` W ) = ( # ` <" A B C "> ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) ) ) ) |
| 4 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
| 5 |
4
|
eqeq2i |
|- ( ( # ` W ) = ( # ` <" A B C "> ) <-> ( # ` W ) = 3 ) |
| 6 |
5
|
a1i |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( # ` W ) = ( # ` <" A B C "> ) <-> ( # ` W ) = 3 ) ) |
| 7 |
6
|
anbi1d |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( # ` W ) = ( # ` <" A B C "> ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) ) <-> ( ( # ` W ) = 3 /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) ) ) ) |
| 8 |
|
oveq2 |
|- ( ( # ` W ) = 3 -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ 3 ) ) |
| 9 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| 10 |
8 9
|
eqtrdi |
|- ( ( # ` W ) = 3 -> ( 0 ..^ ( # ` W ) ) = { 0 , 1 , 2 } ) |
| 11 |
10
|
raleqdv |
|- ( ( # ` W ) = 3 -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) <-> A. i e. { 0 , 1 , 2 } ( W ` i ) = ( <" A B C "> ` i ) ) ) |
| 12 |
|
fveq2 |
|- ( i = 0 -> ( W ` i ) = ( W ` 0 ) ) |
| 13 |
|
fveq2 |
|- ( i = 0 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 0 ) ) |
| 14 |
12 13
|
eqeq12d |
|- ( i = 0 -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 0 ) = ( <" A B C "> ` 0 ) ) ) |
| 15 |
|
s3fv0 |
|- ( A e. V -> ( <" A B C "> ` 0 ) = A ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 0 ) = A ) |
| 17 |
16
|
eqeq2d |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( W ` 0 ) = ( <" A B C "> ` 0 ) <-> ( W ` 0 ) = A ) ) |
| 18 |
14 17
|
sylan9bbr |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ i = 0 ) -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 0 ) = A ) ) |
| 19 |
|
fveq2 |
|- ( i = 1 -> ( W ` i ) = ( W ` 1 ) ) |
| 20 |
|
fveq2 |
|- ( i = 1 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 1 ) ) |
| 21 |
19 20
|
eqeq12d |
|- ( i = 1 -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 1 ) = ( <" A B C "> ` 1 ) ) ) |
| 22 |
|
s3fv1 |
|- ( B e. V -> ( <" A B C "> ` 1 ) = B ) |
| 23 |
22
|
3ad2ant2 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 1 ) = B ) |
| 24 |
23
|
eqeq2d |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( W ` 1 ) = ( <" A B C "> ` 1 ) <-> ( W ` 1 ) = B ) ) |
| 25 |
21 24
|
sylan9bbr |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ i = 1 ) -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 1 ) = B ) ) |
| 26 |
|
fveq2 |
|- ( i = 2 -> ( W ` i ) = ( W ` 2 ) ) |
| 27 |
|
fveq2 |
|- ( i = 2 -> ( <" A B C "> ` i ) = ( <" A B C "> ` 2 ) ) |
| 28 |
26 27
|
eqeq12d |
|- ( i = 2 -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 2 ) = ( <" A B C "> ` 2 ) ) ) |
| 29 |
|
s3fv2 |
|- ( C e. V -> ( <" A B C "> ` 2 ) = C ) |
| 30 |
29
|
3ad2ant3 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( <" A B C "> ` 2 ) = C ) |
| 31 |
30
|
eqeq2d |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( W ` 2 ) = ( <" A B C "> ` 2 ) <-> ( W ` 2 ) = C ) ) |
| 32 |
28 31
|
sylan9bbr |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ i = 2 ) -> ( ( W ` i ) = ( <" A B C "> ` i ) <-> ( W ` 2 ) = C ) ) |
| 33 |
|
0zd |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> 0 e. ZZ ) |
| 34 |
|
1zzd |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> 1 e. ZZ ) |
| 35 |
|
2z |
|- 2 e. ZZ |
| 36 |
35
|
a1i |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> 2 e. ZZ ) |
| 37 |
18 25 32 33 34 36
|
raltpd |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( A. i e. { 0 , 1 , 2 } ( W ` i ) = ( <" A B C "> ` i ) <-> ( ( W ` 0 ) = A /\ ( W ` 1 ) = B /\ ( W ` 2 ) = C ) ) ) |
| 38 |
37
|
adantl |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A. i e. { 0 , 1 , 2 } ( W ` i ) = ( <" A B C "> ` i ) <-> ( ( W ` 0 ) = A /\ ( W ` 1 ) = B /\ ( W ` 2 ) = C ) ) ) |
| 39 |
11 38
|
sylan9bbr |
|- ( ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) /\ ( # ` W ) = 3 ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) <-> ( ( W ` 0 ) = A /\ ( W ` 1 ) = B /\ ( W ` 2 ) = C ) ) ) |
| 40 |
39
|
pm5.32da |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( # ` W ) = 3 /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( <" A B C "> ` i ) ) <-> ( ( # ` W ) = 3 /\ ( ( W ` 0 ) = A /\ ( W ` 1 ) = B /\ ( W ` 2 ) = C ) ) ) ) |
| 41 |
3 7 40
|
3bitrd |
|- ( ( W e. Word V /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( W = <" A B C "> <-> ( ( # ` W ) = 3 /\ ( ( W ` 0 ) = A /\ ( W ` 1 ) = B /\ ( W ` 2 ) = C ) ) ) ) |