| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | wspthsnwspthsnon |  |-  ( W e. ( 2 WSPathsN G ) <-> E. a e. V E. c e. V W e. ( a ( 2 WSPathsNOn G ) c ) ) | 
						
							| 3 | 2 | a1i |  |-  ( G e. UPGraph -> ( W e. ( 2 WSPathsN G ) <-> E. a e. V E. c e. V W e. ( a ( 2 WSPathsNOn G ) c ) ) ) | 
						
							| 4 | 1 | elwspths2on |  |-  ( ( G e. UPGraph /\ a e. V /\ c e. V ) -> ( W e. ( a ( 2 WSPathsNOn G ) c ) <-> E. b e. V ( W = <" a b c "> /\ <" a b c "> e. ( a ( 2 WSPathsNOn G ) c ) ) ) ) | 
						
							| 5 | 4 | 3expb |  |-  ( ( G e. UPGraph /\ ( a e. V /\ c e. V ) ) -> ( W e. ( a ( 2 WSPathsNOn G ) c ) <-> E. b e. V ( W = <" a b c "> /\ <" a b c "> e. ( a ( 2 WSPathsNOn G ) c ) ) ) ) | 
						
							| 6 | 5 | 2rexbidva |  |-  ( G e. UPGraph -> ( E. a e. V E. c e. V W e. ( a ( 2 WSPathsNOn G ) c ) <-> E. a e. V E. c e. V E. b e. V ( W = <" a b c "> /\ <" a b c "> e. ( a ( 2 WSPathsNOn G ) c ) ) ) ) | 
						
							| 7 |  | rexcom |  |-  ( E. c e. V E. b e. V ( W = <" a b c "> /\ <" a b c "> e. ( a ( 2 WSPathsNOn G ) c ) ) <-> E. b e. V E. c e. V ( W = <" a b c "> /\ <" a b c "> e. ( a ( 2 WSPathsNOn G ) c ) ) ) | 
						
							| 8 |  | wspthnon |  |-  ( <" a b c "> e. ( a ( 2 WSPathsNOn G ) c ) <-> ( <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) /\ E. f f ( a ( SPathsOn ` G ) c ) <" a b c "> ) ) | 
						
							| 9 |  | ancom |  |-  ( ( <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) /\ E. f f ( a ( SPathsOn ` G ) c ) <" a b c "> ) <-> ( E. f f ( a ( SPathsOn ` G ) c ) <" a b c "> /\ <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) ) ) | 
						
							| 10 |  | 19.41v |  |-  ( E. f ( f ( a ( SPathsOn ` G ) c ) <" a b c "> /\ <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) ) <-> ( E. f f ( a ( SPathsOn ` G ) c ) <" a b c "> /\ <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) ) ) | 
						
							| 11 | 9 10 | bitr4i |  |-  ( ( <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) /\ E. f f ( a ( SPathsOn ` G ) c ) <" a b c "> ) <-> E. f ( f ( a ( SPathsOn ` G ) c ) <" a b c "> /\ <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( G e. UPGraph /\ a e. V ) -> a e. V ) | 
						
							| 13 |  | simpr |  |-  ( ( b e. V /\ c e. V ) -> c e. V ) | 
						
							| 14 | 12 13 | anim12i |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( a e. V /\ c e. V ) ) | 
						
							| 15 |  | vex |  |-  f e. _V | 
						
							| 16 |  | s3cli |  |-  <" a b c "> e. Word _V | 
						
							| 17 | 15 16 | pm3.2i |  |-  ( f e. _V /\ <" a b c "> e. Word _V ) | 
						
							| 18 | 1 | isspthonpth |  |-  ( ( ( a e. V /\ c e. V ) /\ ( f e. _V /\ <" a b c "> e. Word _V ) ) -> ( f ( a ( SPathsOn ` G ) c ) <" a b c "> <-> ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) ) ) | 
						
							| 19 | 14 17 18 | sylancl |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( f ( a ( SPathsOn ` G ) c ) <" a b c "> <-> ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) ) ) | 
						
							| 20 |  | wwlknon |  |-  ( <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) <-> ( <" a b c "> e. ( 2 WWalksN G ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) | 
						
							| 21 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 22 |  | iswwlksn |  |-  ( 2 e. NN0 -> ( <" a b c "> e. ( 2 WWalksN G ) <-> ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) ) ) | 
						
							| 23 | 21 22 | mp1i |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( <" a b c "> e. ( 2 WWalksN G ) <-> ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) ) ) | 
						
							| 24 | 23 | 3anbi1d |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( ( <" a b c "> e. ( 2 WWalksN G ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) <-> ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) | 
						
							| 25 | 20 24 | bitrid |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) <-> ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) | 
						
							| 26 | 19 25 | anbi12d |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( ( f ( a ( SPathsOn ` G ) c ) <" a b c "> /\ <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) ) <-> ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( f ( a ( SPathsOn ` G ) c ) <" a b c "> /\ <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) ) <-> ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) ) | 
						
							| 28 | 16 | a1i |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> <" a b c "> e. Word _V ) | 
						
							| 29 |  | simprl1 |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ p = <" a b c "> ) /\ ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) -> f ( SPaths ` G ) <" a b c "> ) | 
						
							| 30 |  | spthiswlk |  |-  ( f ( SPaths ` G ) <" a b c "> -> f ( Walks ` G ) <" a b c "> ) | 
						
							| 31 |  | wlklenvm1 |  |-  ( f ( Walks ` G ) <" a b c "> -> ( # ` f ) = ( ( # ` <" a b c "> ) - 1 ) ) | 
						
							| 32 |  | simpl |  |-  ( ( ( # ` f ) = ( ( # ` <" a b c "> ) - 1 ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) -> ( # ` f ) = ( ( # ` <" a b c "> ) - 1 ) ) | 
						
							| 33 |  | oveq1 |  |-  ( ( # ` <" a b c "> ) = ( 2 + 1 ) -> ( ( # ` <" a b c "> ) - 1 ) = ( ( 2 + 1 ) - 1 ) ) | 
						
							| 34 |  | 2cn |  |-  2 e. CC | 
						
							| 35 |  | pncan1 |  |-  ( 2 e. CC -> ( ( 2 + 1 ) - 1 ) = 2 ) | 
						
							| 36 | 34 35 | ax-mp |  |-  ( ( 2 + 1 ) - 1 ) = 2 | 
						
							| 37 | 33 36 | eqtrdi |  |-  ( ( # ` <" a b c "> ) = ( 2 + 1 ) -> ( ( # ` <" a b c "> ) - 1 ) = 2 ) | 
						
							| 38 | 37 | adantl |  |-  ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) -> ( ( # ` <" a b c "> ) - 1 ) = 2 ) | 
						
							| 39 | 38 | 3ad2ant1 |  |-  ( ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) -> ( ( # ` <" a b c "> ) - 1 ) = 2 ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ( # ` f ) = ( ( # ` <" a b c "> ) - 1 ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) -> ( ( # ` <" a b c "> ) - 1 ) = 2 ) | 
						
							| 41 | 32 40 | eqtrd |  |-  ( ( ( # ` f ) = ( ( # ` <" a b c "> ) - 1 ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) -> ( # ` f ) = 2 ) | 
						
							| 42 | 41 | ex |  |-  ( ( # ` f ) = ( ( # ` <" a b c "> ) - 1 ) -> ( ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) -> ( # ` f ) = 2 ) ) | 
						
							| 43 | 30 31 42 | 3syl |  |-  ( f ( SPaths ` G ) <" a b c "> -> ( ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) -> ( # ` f ) = 2 ) ) | 
						
							| 44 | 43 | 3ad2ant1 |  |-  ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) -> ( ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) -> ( # ` f ) = 2 ) ) | 
						
							| 45 | 44 | imp |  |-  ( ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) -> ( # ` f ) = 2 ) | 
						
							| 46 | 45 | adantl |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ p = <" a b c "> ) /\ ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) -> ( # ` f ) = 2 ) | 
						
							| 47 |  | s3fv0 |  |-  ( a e. _V -> ( <" a b c "> ` 0 ) = a ) | 
						
							| 48 | 47 | elv |  |-  ( <" a b c "> ` 0 ) = a | 
						
							| 49 | 48 | eqcomi |  |-  a = ( <" a b c "> ` 0 ) | 
						
							| 50 |  | s3fv1 |  |-  ( b e. _V -> ( <" a b c "> ` 1 ) = b ) | 
						
							| 51 | 50 | elv |  |-  ( <" a b c "> ` 1 ) = b | 
						
							| 52 | 51 | eqcomi |  |-  b = ( <" a b c "> ` 1 ) | 
						
							| 53 |  | s3fv2 |  |-  ( c e. _V -> ( <" a b c "> ` 2 ) = c ) | 
						
							| 54 | 53 | elv |  |-  ( <" a b c "> ` 2 ) = c | 
						
							| 55 | 54 | eqcomi |  |-  c = ( <" a b c "> ` 2 ) | 
						
							| 56 | 49 52 55 | 3pm3.2i |  |-  ( a = ( <" a b c "> ` 0 ) /\ b = ( <" a b c "> ` 1 ) /\ c = ( <" a b c "> ` 2 ) ) | 
						
							| 57 | 56 | a1i |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ p = <" a b c "> ) /\ ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) -> ( a = ( <" a b c "> ` 0 ) /\ b = ( <" a b c "> ` 1 ) /\ c = ( <" a b c "> ` 2 ) ) ) | 
						
							| 58 | 29 46 57 | 3jca |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ p = <" a b c "> ) /\ ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) -> ( f ( SPaths ` G ) <" a b c "> /\ ( # ` f ) = 2 /\ ( a = ( <" a b c "> ` 0 ) /\ b = ( <" a b c "> ` 1 ) /\ c = ( <" a b c "> ` 2 ) ) ) ) | 
						
							| 59 |  | breq2 |  |-  ( p = <" a b c "> -> ( f ( SPaths ` G ) p <-> f ( SPaths ` G ) <" a b c "> ) ) | 
						
							| 60 |  | fveq1 |  |-  ( p = <" a b c "> -> ( p ` 0 ) = ( <" a b c "> ` 0 ) ) | 
						
							| 61 | 60 | eqeq2d |  |-  ( p = <" a b c "> -> ( a = ( p ` 0 ) <-> a = ( <" a b c "> ` 0 ) ) ) | 
						
							| 62 |  | fveq1 |  |-  ( p = <" a b c "> -> ( p ` 1 ) = ( <" a b c "> ` 1 ) ) | 
						
							| 63 | 62 | eqeq2d |  |-  ( p = <" a b c "> -> ( b = ( p ` 1 ) <-> b = ( <" a b c "> ` 1 ) ) ) | 
						
							| 64 |  | fveq1 |  |-  ( p = <" a b c "> -> ( p ` 2 ) = ( <" a b c "> ` 2 ) ) | 
						
							| 65 | 64 | eqeq2d |  |-  ( p = <" a b c "> -> ( c = ( p ` 2 ) <-> c = ( <" a b c "> ` 2 ) ) ) | 
						
							| 66 | 61 63 65 | 3anbi123d |  |-  ( p = <" a b c "> -> ( ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) <-> ( a = ( <" a b c "> ` 0 ) /\ b = ( <" a b c "> ` 1 ) /\ c = ( <" a b c "> ` 2 ) ) ) ) | 
						
							| 67 | 59 66 | 3anbi13d |  |-  ( p = <" a b c "> -> ( ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) <-> ( f ( SPaths ` G ) <" a b c "> /\ ( # ` f ) = 2 /\ ( a = ( <" a b c "> ` 0 ) /\ b = ( <" a b c "> ` 1 ) /\ c = ( <" a b c "> ` 2 ) ) ) ) ) | 
						
							| 68 | 67 | ad2antlr |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ p = <" a b c "> ) /\ ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) -> ( ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) <-> ( f ( SPaths ` G ) <" a b c "> /\ ( # ` f ) = 2 /\ ( a = ( <" a b c "> ` 0 ) /\ b = ( <" a b c "> ` 1 ) /\ c = ( <" a b c "> ` 2 ) ) ) ) ) | 
						
							| 69 | 58 68 | mpbird |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ p = <" a b c "> ) /\ ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) -> ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) | 
						
							| 70 | 69 | ex |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ p = <" a b c "> ) -> ( ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) -> ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 71 | 28 70 | spcimedv |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) -> E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 72 |  | spthiswlk |  |-  ( f ( SPaths ` G ) p -> f ( Walks ` G ) p ) | 
						
							| 73 |  | wlklenvp1 |  |-  ( f ( Walks ` G ) p -> ( # ` p ) = ( ( # ` f ) + 1 ) ) | 
						
							| 74 |  | oveq1 |  |-  ( ( # ` f ) = 2 -> ( ( # ` f ) + 1 ) = ( 2 + 1 ) ) | 
						
							| 75 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 76 | 74 75 | eqtrdi |  |-  ( ( # ` f ) = 2 -> ( ( # ` f ) + 1 ) = 3 ) | 
						
							| 77 | 76 | eqeq2d |  |-  ( ( # ` f ) = 2 -> ( ( # ` p ) = ( ( # ` f ) + 1 ) <-> ( # ` p ) = 3 ) ) | 
						
							| 78 | 77 | biimpcd |  |-  ( ( # ` p ) = ( ( # ` f ) + 1 ) -> ( ( # ` f ) = 2 -> ( # ` p ) = 3 ) ) | 
						
							| 79 | 72 73 78 | 3syl |  |-  ( f ( SPaths ` G ) p -> ( ( # ` f ) = 2 -> ( # ` p ) = 3 ) ) | 
						
							| 80 | 79 | imp |  |-  ( ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 ) -> ( # ` p ) = 3 ) | 
						
							| 81 | 80 | 3adant3 |  |-  ( ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( # ` p ) = 3 ) | 
						
							| 82 | 81 | adantl |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) -> ( # ` p ) = 3 ) | 
						
							| 83 |  | eqcom |  |-  ( a = ( p ` 0 ) <-> ( p ` 0 ) = a ) | 
						
							| 84 |  | eqcom |  |-  ( b = ( p ` 1 ) <-> ( p ` 1 ) = b ) | 
						
							| 85 |  | eqcom |  |-  ( c = ( p ` 2 ) <-> ( p ` 2 ) = c ) | 
						
							| 86 | 83 84 85 | 3anbi123i |  |-  ( ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) <-> ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) | 
						
							| 87 | 86 | biimpi |  |-  ( ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) -> ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) | 
						
							| 88 | 87 | 3ad2ant3 |  |-  ( ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) | 
						
							| 89 | 88 | adantl |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) -> ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) | 
						
							| 90 | 82 89 | jca |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) -> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) ) | 
						
							| 91 | 1 | wlkpwrd |  |-  ( f ( Walks ` G ) p -> p e. Word V ) | 
						
							| 92 | 72 91 | syl |  |-  ( f ( SPaths ` G ) p -> p e. Word V ) | 
						
							| 93 | 92 | 3ad2ant1 |  |-  ( ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> p e. Word V ) | 
						
							| 94 | 12 | anim1i |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( a e. V /\ ( b e. V /\ c e. V ) ) ) | 
						
							| 95 |  | 3anass |  |-  ( ( a e. V /\ b e. V /\ c e. V ) <-> ( a e. V /\ ( b e. V /\ c e. V ) ) ) | 
						
							| 96 | 94 95 | sylibr |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( a e. V /\ b e. V /\ c e. V ) ) | 
						
							| 97 |  | eqwrds3 |  |-  ( ( p e. Word V /\ ( a e. V /\ b e. V /\ c e. V ) ) -> ( p = <" a b c "> <-> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) ) ) | 
						
							| 98 | 93 96 97 | syl2anr |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) -> ( p = <" a b c "> <-> ( ( # ` p ) = 3 /\ ( ( p ` 0 ) = a /\ ( p ` 1 ) = b /\ ( p ` 2 ) = c ) ) ) ) | 
						
							| 99 | 90 98 | mpbird |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) -> p = <" a b c "> ) | 
						
							| 100 | 59 | biimpcd |  |-  ( f ( SPaths ` G ) p -> ( p = <" a b c "> -> f ( SPaths ` G ) <" a b c "> ) ) | 
						
							| 101 | 100 | 3ad2ant1 |  |-  ( ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( p = <" a b c "> -> f ( SPaths ` G ) <" a b c "> ) ) | 
						
							| 102 | 101 | adantl |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) -> ( p = <" a b c "> -> f ( SPaths ` G ) <" a b c "> ) ) | 
						
							| 103 | 102 | imp |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) /\ p = <" a b c "> ) -> f ( SPaths ` G ) <" a b c "> ) | 
						
							| 104 | 48 | a1i |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) /\ p = <" a b c "> ) -> ( <" a b c "> ` 0 ) = a ) | 
						
							| 105 |  | fveq2 |  |-  ( ( # ` f ) = 2 -> ( <" a b c "> ` ( # ` f ) ) = ( <" a b c "> ` 2 ) ) | 
						
							| 106 | 105 54 | eqtrdi |  |-  ( ( # ` f ) = 2 -> ( <" a b c "> ` ( # ` f ) ) = c ) | 
						
							| 107 | 106 | 3ad2ant2 |  |-  ( ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( <" a b c "> ` ( # ` f ) ) = c ) | 
						
							| 108 | 107 | ad2antlr |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) /\ p = <" a b c "> ) -> ( <" a b c "> ` ( # ` f ) ) = c ) | 
						
							| 109 | 103 104 108 | 3jca |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) /\ p = <" a b c "> ) -> ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) ) | 
						
							| 110 |  | wlkiswwlks1 |  |-  ( G e. UPGraph -> ( f ( Walks ` G ) p -> p e. ( WWalks ` G ) ) ) | 
						
							| 111 | 110 | adantr |  |-  ( ( G e. UPGraph /\ a e. V ) -> ( f ( Walks ` G ) p -> p e. ( WWalks ` G ) ) ) | 
						
							| 112 | 111 | adantr |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( f ( Walks ` G ) p -> p e. ( WWalks ` G ) ) ) | 
						
							| 113 | 72 112 | syl5com |  |-  ( f ( SPaths ` G ) p -> ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> p e. ( WWalks ` G ) ) ) | 
						
							| 114 | 113 | 3ad2ant1 |  |-  ( ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> p e. ( WWalks ` G ) ) ) | 
						
							| 115 | 114 | impcom |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) -> p e. ( WWalks ` G ) ) | 
						
							| 116 | 115 | adantr |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) /\ p = <" a b c "> ) -> p e. ( WWalks ` G ) ) | 
						
							| 117 |  | eleq1 |  |-  ( p = <" a b c "> -> ( p e. ( WWalks ` G ) <-> <" a b c "> e. ( WWalks ` G ) ) ) | 
						
							| 118 | 117 | bicomd |  |-  ( p = <" a b c "> -> ( <" a b c "> e. ( WWalks ` G ) <-> p e. ( WWalks ` G ) ) ) | 
						
							| 119 | 118 | adantl |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) /\ p = <" a b c "> ) -> ( <" a b c "> e. ( WWalks ` G ) <-> p e. ( WWalks ` G ) ) ) | 
						
							| 120 | 116 119 | mpbird |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) /\ p = <" a b c "> ) -> <" a b c "> e. ( WWalks ` G ) ) | 
						
							| 121 |  | s3len |  |-  ( # ` <" a b c "> ) = 3 | 
						
							| 122 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 123 | 121 122 | eqtri |  |-  ( # ` <" a b c "> ) = ( 2 + 1 ) | 
						
							| 124 | 120 123 | jctir |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) /\ p = <" a b c "> ) -> ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) ) | 
						
							| 125 | 54 | a1i |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) /\ p = <" a b c "> ) -> ( <" a b c "> ` 2 ) = c ) | 
						
							| 126 | 124 104 125 | 3jca |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) /\ p = <" a b c "> ) -> ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) | 
						
							| 127 | 109 126 | jca |  |-  ( ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) /\ p = <" a b c "> ) -> ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) | 
						
							| 128 | 99 127 | mpdan |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) -> ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) | 
						
							| 129 | 128 | ex |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) ) | 
						
							| 130 | 129 | exlimdv |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) -> ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) ) ) | 
						
							| 131 | 71 130 | impbid |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) <-> E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 132 | 131 | adantr |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( ( f ( SPaths ` G ) <" a b c "> /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` ( # ` f ) ) = c ) /\ ( ( <" a b c "> e. ( WWalks ` G ) /\ ( # ` <" a b c "> ) = ( 2 + 1 ) ) /\ ( <" a b c "> ` 0 ) = a /\ ( <" a b c "> ` 2 ) = c ) ) <-> E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 133 | 27 132 | bitrd |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( f ( a ( SPathsOn ` G ) c ) <" a b c "> /\ <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) ) <-> E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 134 | 133 | exbidv |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( E. f ( f ( a ( SPathsOn ` G ) c ) <" a b c "> /\ <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) ) <-> E. f E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 135 | 11 134 | bitrid |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( ( <" a b c "> e. ( a ( 2 WWalksNOn G ) c ) /\ E. f f ( a ( SPathsOn ` G ) c ) <" a b c "> ) <-> E. f E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 136 | 8 135 | bitrid |  |-  ( ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) /\ W = <" a b c "> ) -> ( <" a b c "> e. ( a ( 2 WSPathsNOn G ) c ) <-> E. f E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) | 
						
							| 137 | 136 | pm5.32da |  |-  ( ( ( G e. UPGraph /\ a e. V ) /\ ( b e. V /\ c e. V ) ) -> ( ( W = <" a b c "> /\ <" a b c "> e. ( a ( 2 WSPathsNOn G ) c ) ) <-> ( W = <" a b c "> /\ E. f E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) | 
						
							| 138 | 137 | 2rexbidva |  |-  ( ( G e. UPGraph /\ a e. V ) -> ( E. b e. V E. c e. V ( W = <" a b c "> /\ <" a b c "> e. ( a ( 2 WSPathsNOn G ) c ) ) <-> E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) | 
						
							| 139 | 7 138 | bitrid |  |-  ( ( G e. UPGraph /\ a e. V ) -> ( E. c e. V E. b e. V ( W = <" a b c "> /\ <" a b c "> e. ( a ( 2 WSPathsNOn G ) c ) ) <-> E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) | 
						
							| 140 | 139 | rexbidva |  |-  ( G e. UPGraph -> ( E. a e. V E. c e. V E. b e. V ( W = <" a b c "> /\ <" a b c "> e. ( a ( 2 WSPathsNOn G ) c ) ) <-> E. a e. V E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) | 
						
							| 141 | 3 6 140 | 3bitrd |  |-  ( G e. UPGraph -> ( W e. ( 2 WSPathsN G ) <-> E. a e. V E. b e. V E. c e. V ( W = <" a b c "> /\ E. f E. p ( f ( SPaths ` G ) p /\ ( # ` f ) = 2 /\ ( a = ( p ` 0 ) /\ b = ( p ` 1 ) /\ c = ( p ` 2 ) ) ) ) ) ) |