| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elwwlks2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | wspthsnwspthsnon | ⊢ ( 𝑊  ∈  ( 2  WSPathsN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝑊  ∈  ( 2  WSPathsN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) ) | 
						
							| 4 | 1 | elwspths2on | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  ( 𝑊  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) ) ) | 
						
							| 5 | 4 | 3expb | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑊  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 )  ↔  ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) ) ) | 
						
							| 6 | 5 | 2rexbidva | ⊢ ( 𝐺  ∈  UPGraph  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 𝑊  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) ) ) | 
						
							| 7 |  | rexcom | ⊢ ( ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) ) ) | 
						
							| 8 |  | wspthnon | ⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 )  ↔  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ∧  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) | 
						
							| 9 |  | ancom | ⊢ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ∧  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 )  ↔  ( ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) ) ) | 
						
							| 10 |  | 19.41v | ⊢ ( ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) )  ↔  ( ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) ) ) | 
						
							| 11 | 9 10 | bitr4i | ⊢ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ∧  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 )  ↔  ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  →  𝑎  ∈  𝑉 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  →  𝑐  ∈  𝑉 ) | 
						
							| 14 | 12 13 | anim12i | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) | 
						
							| 15 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 16 |  | s3cli | ⊢ 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  V | 
						
							| 17 | 15 16 | pm3.2i | ⊢ ( 𝑓  ∈  V  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  V ) | 
						
							| 18 | 1 | isspthonpth | ⊢ ( ( ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  ∧  ( 𝑓  ∈  V  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  V ) )  →  ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 ) ) ) | 
						
							| 19 | 14 17 18 | sylancl | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 ) ) ) | 
						
							| 20 |  | wwlknon | ⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ↔  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) | 
						
							| 21 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 22 |  | iswwlksn | ⊢ ( 2  ∈  ℕ0  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 2  WWalksN  𝐺 )  ↔  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) ) ) ) | 
						
							| 23 | 21 22 | mp1i | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 2  WWalksN  𝐺 )  ↔  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) ) ) ) | 
						
							| 24 | 23 | 3anbi1d | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 2  WWalksN  𝐺 )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  ↔  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) | 
						
							| 25 | 20 24 | bitrid | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ↔  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) | 
						
							| 26 | 19 25 | anbi12d | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) )  ↔  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) )  ↔  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 28 | 16 | a1i | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  Word  V ) | 
						
							| 29 |  | simprl1 | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 30 |  | spthiswlk | ⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 31 |  | wlklenvm1 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 ) ) | 
						
							| 32 |  | simpl | ⊢ ( ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 ) ) | 
						
							| 33 |  | oveq1 | ⊢ ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 )  →  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  =  ( ( 2  +  1 )  −  1 ) ) | 
						
							| 34 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 35 |  | pncan1 | ⊢ ( 2  ∈  ℂ  →  ( ( 2  +  1 )  −  1 )  =  2 ) | 
						
							| 36 | 34 35 | ax-mp | ⊢ ( ( 2  +  1 )  −  1 )  =  2 | 
						
							| 37 | 33 36 | eqtrdi | ⊢ ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 )  →  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  =  2 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  →  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  =  2 ) | 
						
							| 39 | 38 | 3ad2ant1 | ⊢ ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  →  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  =  2 ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  =  2 ) | 
						
							| 41 | 32 40 | eqtrd | ⊢ ( ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ( ♯ ‘ 𝑓 )  =  2 ) | 
						
							| 42 | 41 | ex | ⊢ ( ( ♯ ‘ 𝑓 )  =  ( ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  −  1 )  →  ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  →  ( ♯ ‘ 𝑓 )  =  2 ) ) | 
						
							| 43 | 30 31 42 | 3syl | ⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  →  ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  →  ( ♯ ‘ 𝑓 )  =  2 ) ) | 
						
							| 44 | 43 | 3ad2ant1 | ⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  →  ( ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 )  →  ( ♯ ‘ 𝑓 )  =  2 ) ) | 
						
							| 45 | 44 | imp | ⊢ ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ( ♯ ‘ 𝑓 )  =  2 ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  ( ♯ ‘ 𝑓 )  =  2 ) | 
						
							| 47 |  | s3fv0 | ⊢ ( 𝑎  ∈  V  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎 ) | 
						
							| 48 | 47 | elv | ⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎 | 
						
							| 49 | 48 | eqcomi | ⊢ 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) | 
						
							| 50 |  | s3fv1 | ⊢ ( 𝑏  ∈  V  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  =  𝑏 ) | 
						
							| 51 | 50 | elv | ⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  =  𝑏 | 
						
							| 52 | 51 | eqcomi | ⊢ 𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) | 
						
							| 53 |  | s3fv2 | ⊢ ( 𝑐  ∈  V  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) | 
						
							| 54 | 53 | elv | ⊢ ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 | 
						
							| 55 | 54 | eqcomi | ⊢ 𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) | 
						
							| 56 | 49 52 55 | 3pm3.2i | ⊢ ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) | 
						
							| 57 | 56 | a1i | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) | 
						
							| 58 | 29 46 57 | 3jca | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) ) | 
						
							| 59 |  | breq2 | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ↔  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) | 
						
							| 60 |  | fveq1 | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑝 ‘ 0 )  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ) | 
						
							| 61 | 60 | eqeq2d | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑎  =  ( 𝑝 ‘ 0 )  ↔  𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 ) ) ) | 
						
							| 62 |  | fveq1 | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑝 ‘ 1 )  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ) | 
						
							| 63 | 62 | eqeq2d | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑏  =  ( 𝑝 ‘ 1 )  ↔  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 ) ) ) | 
						
							| 64 |  | fveq1 | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑝 ‘ 2 )  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) | 
						
							| 65 | 64 | eqeq2d | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑐  =  ( 𝑝 ‘ 2 )  ↔  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) | 
						
							| 66 | 61 63 65 | 3anbi123d | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) )  ↔  ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) ) | 
						
							| 67 | 59 66 | 3anbi13d | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) ) ) | 
						
							| 68 | 67 | ad2antlr | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  ↔  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  ∧  𝑏  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 1 )  ∧  𝑐  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) ) ) ) | 
						
							| 69 | 58 68 | mpbird | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  ∧  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) )  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) | 
						
							| 70 | 69 | ex | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 71 | 28 70 | spcimedv | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  →  ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 72 |  | spthiswlk | ⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  →  𝑓 ( Walks ‘ 𝐺 ) 𝑝 ) | 
						
							| 73 |  | wlklenvp1 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) ) | 
						
							| 74 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( ♯ ‘ 𝑓 )  +  1 )  =  ( 2  +  1 ) ) | 
						
							| 75 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 76 | 74 75 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( ♯ ‘ 𝑓 )  +  1 )  =  3 ) | 
						
							| 77 | 76 | eqeq2d | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  ↔  ( ♯ ‘ 𝑝 )  =  3 ) ) | 
						
							| 78 | 77 | biimpcd | ⊢ ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ♯ ‘ 𝑝 )  =  3 ) ) | 
						
							| 79 | 72 73 78 | 3syl | ⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ♯ ‘ 𝑝 )  =  3 ) ) | 
						
							| 80 | 79 | imp | ⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ♯ ‘ 𝑝 )  =  3 ) | 
						
							| 81 | 80 | 3adant3 | ⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ♯ ‘ 𝑝 )  =  3 ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ♯ ‘ 𝑝 )  =  3 ) | 
						
							| 83 |  | eqcom | ⊢ ( 𝑎  =  ( 𝑝 ‘ 0 )  ↔  ( 𝑝 ‘ 0 )  =  𝑎 ) | 
						
							| 84 |  | eqcom | ⊢ ( 𝑏  =  ( 𝑝 ‘ 1 )  ↔  ( 𝑝 ‘ 1 )  =  𝑏 ) | 
						
							| 85 |  | eqcom | ⊢ ( 𝑐  =  ( 𝑝 ‘ 2 )  ↔  ( 𝑝 ‘ 2 )  =  𝑐 ) | 
						
							| 86 | 83 84 85 | 3anbi123i | ⊢ ( ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) )  ↔  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) | 
						
							| 87 | 86 | biimpi | ⊢ ( ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) )  →  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) | 
						
							| 88 | 87 | 3ad2ant3 | ⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) | 
						
							| 90 | 82 89 | jca | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) ) | 
						
							| 91 | 1 | wlkpwrd | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑝  ∈  Word  𝑉 ) | 
						
							| 92 | 72 91 | syl | ⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  →  𝑝  ∈  Word  𝑉 ) | 
						
							| 93 | 92 | 3ad2ant1 | ⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  𝑝  ∈  Word  𝑉 ) | 
						
							| 94 | 12 | anim1i | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑎  ∈  𝑉  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) ) | 
						
							| 95 |  | 3anass | ⊢ ( ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 )  ↔  ( 𝑎  ∈  𝑉  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) ) | 
						
							| 96 | 94 95 | sylibr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) ) | 
						
							| 97 |  | eqwrds3 | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 98 | 93 96 97 | syl2anr | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  ↔  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝑎  ∧  ( 𝑝 ‘ 1 )  =  𝑏  ∧  ( 𝑝 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 99 | 90 98 | mpbird | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 100 | 59 | biimpcd | ⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) | 
						
							| 101 | 100 | 3ad2ant1 | ⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) | 
						
							| 102 | 101 | adantl | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) ) | 
						
							| 103 | 102 | imp | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉 ) | 
						
							| 104 | 48 | a1i | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎 ) | 
						
							| 105 |  | fveq2 | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 ) ) | 
						
							| 106 | 105 54 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 ) | 
						
							| 107 | 106 | 3ad2ant2 | ⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 ) | 
						
							| 108 | 107 | ad2antlr | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 ) | 
						
							| 109 | 103 104 108 | 3jca | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 ) ) | 
						
							| 110 |  | wlkiswwlks1 | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 113 | 72 112 | syl5com | ⊢ ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  →  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 114 | 113 | 3ad2ant1 | ⊢ ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 115 | 114 | impcom | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) | 
						
							| 117 |  | eleq1 | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 𝑝  ∈  ( WWalks ‘ 𝐺 )  ↔  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 118 | 117 | bicomd | ⊢ ( 𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ↔  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 119 | 118 | adantl | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ↔  𝑝  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 120 | 116 119 | mpbird | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 ) ) | 
						
							| 121 |  | s3len | ⊢ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  3 | 
						
							| 122 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 123 | 121 122 | eqtri | ⊢ ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) | 
						
							| 124 | 120 123 | jctir | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) ) ) | 
						
							| 125 | 54 | a1i | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) | 
						
							| 126 | 124 104 125 | 3jca | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) | 
						
							| 127 | 109 126 | jca | ⊢ ( ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  ∧  𝑝  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) | 
						
							| 128 | 99 127 | mpdan | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) | 
						
							| 129 | 128 | ex | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 130 | 129 | exlimdv | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) ) ) ) | 
						
							| 131 | 71 130 | impbid | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  ↔  ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( ( 𝑓 ( SPaths ‘ 𝐺 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ ( ♯ ‘ 𝑓 ) )  =  𝑐 )  ∧  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 〈“ 𝑎 𝑏 𝑐 ”〉 )  =  ( 2  +  1 ) )  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 0 )  =  𝑎  ∧  ( 〈“ 𝑎 𝑏 𝑐 ”〉 ‘ 2 )  =  𝑐 ) )  ↔  ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 133 | 27 132 | bitrd | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 134 | 133 | exbidv | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ∃ 𝑓 ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 135 | 11 134 | bitrid | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WWalksNOn  𝐺 ) 𝑐 )  ∧  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑐 ) 〈“ 𝑎 𝑏 𝑐 ”〉 )  ↔  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 136 | 8 135 | bitrid | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  ∧  𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉 )  →  ( 〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 )  ↔  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) | 
						
							| 137 | 136 | pm5.32da | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑐  ∈  𝑉 ) )  →  ( ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  ↔  ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) ) | 
						
							| 138 | 137 | 2rexbidva | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  →  ( ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) ) | 
						
							| 139 | 7 138 | bitrid | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑎  ∈  𝑉 )  →  ( ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) ) | 
						
							| 140 | 139 | rexbidva | ⊢ ( 𝐺  ∈  UPGraph  →  ( ∃ 𝑎  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  〈“ 𝑎 𝑏 𝑐 ”〉  ∈  ( 𝑎 ( 2  WSPathsNOn  𝐺 ) 𝑐 ) )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) ) | 
						
							| 141 | 3 6 140 | 3bitrd | ⊢ ( 𝐺  ∈  UPGraph  →  ( 𝑊  ∈  ( 2  WSPathsN  𝐺 )  ↔  ∃ 𝑎  ∈  𝑉 ∃ 𝑏  ∈  𝑉 ∃ 𝑐  ∈  𝑉 ( 𝑊  =  〈“ 𝑎 𝑏 𝑐 ”〉  ∧  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝑎  =  ( 𝑝 ‘ 0 )  ∧  𝑏  =  ( 𝑝 ‘ 1 )  ∧  𝑐  =  ( 𝑝 ‘ 2 ) ) ) ) ) ) |