| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isspthonpth.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | isspthson |  |-  ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) ) | 
						
							| 3 | 1 | istrlson |  |-  ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) | 
						
							| 5 |  | spthispth |  |-  ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) | 
						
							| 6 |  | pthistrl |  |-  ( F ( Paths ` G ) P -> F ( Trails ` G ) P ) | 
						
							| 7 | 5 6 | syl |  |-  ( F ( SPaths ` G ) P -> F ( Trails ` G ) P ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> F ( Trails ` G ) P ) | 
						
							| 9 | 8 | biantrud |  |-  ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) | 
						
							| 10 |  | spthiswlk |  |-  ( F ( SPaths ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> F ( Walks ` G ) P ) | 
						
							| 12 | 1 | iswlkon |  |-  ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 13 |  | 3anass |  |-  ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( F ( Walks ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 14 | 12 13 | bitrdi |  |-  ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) ) | 
						
							| 16 | 11 15 | mpbirand |  |-  ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 17 | 4 9 16 | 3bitr2d |  |-  ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 18 | 17 | ex |  |-  ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( SPaths ` G ) P -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) ) | 
						
							| 19 | 18 | pm5.32rd |  |-  ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) <-> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ F ( SPaths ` G ) P ) ) ) | 
						
							| 20 |  | 3anass |  |-  ( ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( F ( SPaths ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 21 |  | ancom |  |-  ( ( F ( SPaths ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) <-> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ F ( SPaths ` G ) P ) ) | 
						
							| 22 | 20 21 | bitr2i |  |-  ( ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ F ( SPaths ` G ) P ) <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) | 
						
							| 23 | 19 22 | bitrdi |  |-  ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) | 
						
							| 24 | 2 23 | bitrd |  |-  ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |