Metamath Proof Explorer


Theorem isspthonpth

Description: A pair of functions is a simple path between two given vertices iff it is a simple path starting and ending at the two vertices. (Contributed by Alexander van der Vekens, 9-Mar-2018) (Revised by AV, 17-Jan-2021)

Ref Expression
Hypothesis isspthonpth.v V=VtxG
Assertion isspthonpth AVBVFWPZFASPathsOnGBPFSPathsGPP0=APF=B

Proof

Step Hyp Ref Expression
1 isspthonpth.v V=VtxG
2 1 isspthson AVBVFWPZFASPathsOnGBPFATrailsOnGBPFSPathsGP
3 1 istrlson AVBVFWPZFATrailsOnGBPFAWalksOnGBPFTrailsGP
4 3 adantr AVBVFWPZFSPathsGPFATrailsOnGBPFAWalksOnGBPFTrailsGP
5 spthispth FSPathsGPFPathsGP
6 pthistrl FPathsGPFTrailsGP
7 5 6 syl FSPathsGPFTrailsGP
8 7 adantl AVBVFWPZFSPathsGPFTrailsGP
9 8 biantrud AVBVFWPZFSPathsGPFAWalksOnGBPFAWalksOnGBPFTrailsGP
10 spthiswlk FSPathsGPFWalksGP
11 10 adantl AVBVFWPZFSPathsGPFWalksGP
12 1 iswlkon AVBVFWPZFAWalksOnGBPFWalksGPP0=APF=B
13 3anass FWalksGPP0=APF=BFWalksGPP0=APF=B
14 12 13 bitrdi AVBVFWPZFAWalksOnGBPFWalksGPP0=APF=B
15 14 adantr AVBVFWPZFSPathsGPFAWalksOnGBPFWalksGPP0=APF=B
16 11 15 mpbirand AVBVFWPZFSPathsGPFAWalksOnGBPP0=APF=B
17 4 9 16 3bitr2d AVBVFWPZFSPathsGPFATrailsOnGBPP0=APF=B
18 17 ex AVBVFWPZFSPathsGPFATrailsOnGBPP0=APF=B
19 18 pm5.32rd AVBVFWPZFATrailsOnGBPFSPathsGPP0=APF=BFSPathsGP
20 3anass FSPathsGPP0=APF=BFSPathsGPP0=APF=B
21 ancom FSPathsGPP0=APF=BP0=APF=BFSPathsGP
22 20 21 bitr2i P0=APF=BFSPathsGPFSPathsGPP0=APF=B
23 19 22 bitrdi AVBVFWPZFATrailsOnGBPFSPathsGPFSPathsGPP0=APF=B
24 2 23 bitrd AVBVFWPZFASPathsOnGBPFSPathsGPP0=APF=B