| Step | Hyp | Ref | Expression | 
						
							| 1 |  | s3wwlks2on.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | usgrwwlks2on.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | umgrupgr | ⊢ ( 𝐺  ∈  UMGraph  →  𝐺  ∈  UPGraph ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐺  ∈  UPGraph ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  𝐴  ∈  𝑉 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 7 |  | simpr3 | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  𝐶  ∈  𝑉 ) | 
						
							| 8 | 1 | s3wwlks2on | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 9 | 4 6 7 8 | syl3anc | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 11 | 1 10 | upgr2wlk | ⊢ ( 𝐺  ∈  UPGraph  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ↔  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) ) ) ) | 
						
							| 12 | 3 11 | syl | ⊢ ( 𝐺  ∈  UMGraph  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ↔  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ↔  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) ) ) ) | 
						
							| 14 |  | s3fv0 | ⊢ ( 𝐴  ∈  𝑉  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 )  =  𝐴 ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 )  =  𝐴 ) | 
						
							| 16 |  | s3fv1 | ⊢ ( 𝐵  ∈  𝑉  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 )  =  𝐵 ) | 
						
							| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 )  =  𝐵 ) | 
						
							| 18 | 15 17 | preq12d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) }  ↔  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 20 |  | s3fv2 | ⊢ ( 𝐶  ∈  𝑉  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  =  𝐶 ) | 
						
							| 21 | 20 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 )  =  𝐶 ) | 
						
							| 22 | 17 21 | preq12d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) }  =  { 𝐵 ,  𝐶 } ) | 
						
							| 23 | 22 | eqeq2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) }  ↔  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) | 
						
							| 24 | 19 23 | anbi12d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } )  ↔  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } )  ↔  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) ) | 
						
							| 26 | 25 | 3anbi3d | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) )  ↔  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) ) ) | 
						
							| 27 |  | umgruhgr | ⊢ ( 𝐺  ∈  UMGraph  →  𝐺  ∈  UHGraph ) | 
						
							| 28 | 10 | uhgrfun | ⊢ ( 𝐺  ∈  UHGraph  →  Fun  ( iEdg ‘ 𝐺 ) ) | 
						
							| 29 |  | fdmrn | ⊢ ( Fun  ( iEdg ‘ 𝐺 )  ↔  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ran  ( iEdg ‘ 𝐺 ) )  →  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 31 |  | id | ⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 32 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 33 | 32 | prid1 | ⊢ 0  ∈  { 0 ,  1 } | 
						
							| 34 |  | fzo0to2pr | ⊢ ( 0 ..^ 2 )  =  { 0 ,  1 } | 
						
							| 35 | 33 34 | eleqtrri | ⊢ 0  ∈  ( 0 ..^ 2 ) | 
						
							| 36 | 35 | a1i | ⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  0  ∈  ( 0 ..^ 2 ) ) | 
						
							| 37 | 31 36 | ffvelcdmd | ⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  ( 𝑓 ‘ 0 )  ∈  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ran  ( iEdg ‘ 𝐺 ) )  →  ( 𝑓 ‘ 0 )  ∈  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 39 | 30 38 | ffvelcdmd | ⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ran  ( iEdg ‘ 𝐺 ) )  →  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 40 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 41 | 40 | prid2 | ⊢ 1  ∈  { 0 ,  1 } | 
						
							| 42 | 41 34 | eleqtrri | ⊢ 1  ∈  ( 0 ..^ 2 ) | 
						
							| 43 | 42 | a1i | ⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  1  ∈  ( 0 ..^ 2 ) ) | 
						
							| 44 | 31 43 | ffvelcdmd | ⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  ( 𝑓 ‘ 1 )  ∈  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ran  ( iEdg ‘ 𝐺 ) )  →  ( 𝑓 ‘ 1 )  ∈  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 46 | 30 45 | ffvelcdmd | ⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ran  ( iEdg ‘ 𝐺 ) )  →  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 47 | 39 46 | jca | ⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ran  ( iEdg ‘ 𝐺 ) )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  ∈  ran  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 48 | 47 | ex | ⊢ ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  →  ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ran  ( iEdg ‘ 𝐺 )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  ∈  ran  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) ) | 
						
							| 49 | 48 | 3ad2ant1 | ⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) )  →  ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ran  ( iEdg ‘ 𝐺 )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  ∈  ran  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) ) | 
						
							| 50 | 49 | com12 | ⊢ ( ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ran  ( iEdg ‘ 𝐺 )  →  ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  ∈  ran  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) ) | 
						
							| 51 | 29 50 | sylbi | ⊢ ( Fun  ( iEdg ‘ 𝐺 )  →  ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  ∈  ran  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) ) | 
						
							| 52 | 27 28 51 | 3syl | ⊢ ( 𝐺  ∈  UMGraph  →  ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  ∈  ran  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  ∈  ran  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 54 |  | eqcom | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ↔  { 𝐴 ,  𝐵 }  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ) | 
						
							| 55 | 54 | biimpi | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  →  { 𝐴 ,  𝐵 }  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } )  →  { 𝐴 ,  𝐵 }  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ) | 
						
							| 57 | 56 | 3ad2ant3 | ⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) )  →  { 𝐴 ,  𝐵 }  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) )  →  { 𝐴 ,  𝐵 }  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) ) ) | 
						
							| 59 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 60 | 2 59 | eqtri | ⊢ 𝐸  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 61 | 60 | a1i | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) )  →  𝐸  =  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 62 | 58 61 | eleq12d | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) )  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ↔  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 63 |  | eqcom | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 }  ↔  { 𝐵 ,  𝐶 }  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ) | 
						
							| 64 | 63 | biimpi | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 }  →  { 𝐵 ,  𝐶 }  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ) | 
						
							| 65 | 64 | adantl | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } )  →  { 𝐵 ,  𝐶 }  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ) | 
						
							| 66 | 65 | 3ad2ant3 | ⊢ ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) )  →  { 𝐵 ,  𝐶 }  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) )  →  { 𝐵 ,  𝐶 }  =  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) ) ) | 
						
							| 68 | 67 61 | eleq12d | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) )  →  ( { 𝐵 ,  𝐶 }  ∈  𝐸  ↔  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 69 | 62 68 | anbi12d | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) )  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ↔  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  ∈  ran  ( iEdg ‘ 𝐺 )  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  ∈  ran  ( iEdg ‘ 𝐺 ) ) ) ) | 
						
							| 70 | 53 69 | mpbird | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) ) )  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 71 | 70 | ex | ⊢ ( 𝐺  ∈  UMGraph  →  ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) )  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { 𝐵 ,  𝐶 } ) )  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 73 | 26 72 | sylbid | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑓 : ( 0 ..^ 2 ) ⟶ dom  ( iEdg ‘ 𝐺 )  ∧  〈“ 𝐴 𝐵 𝐶 ”〉 : ( 0 ... 2 ) ⟶ 𝑉  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 0 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 1 ) )  =  { ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ,  ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) } ) )  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 74 | 13 73 | sylbid | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 75 | 74 | exlimdv | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 76 | 2 | umgr2wlk | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) ) | 
						
							| 77 |  | wlklenvp1 | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) ) | 
						
							| 78 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( ♯ ‘ 𝑓 )  +  1 )  =  ( 2  +  1 ) ) | 
						
							| 79 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 80 | 78 79 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( ♯ ‘ 𝑓 )  +  1 )  =  3 ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( ♯ ‘ 𝑓 )  +  1 )  =  3 ) | 
						
							| 82 | 77 81 | sylan9eq | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ♯ ‘ 𝑝 )  =  3 ) | 
						
							| 83 |  | eqcom | ⊢ ( 𝐴  =  ( 𝑝 ‘ 0 )  ↔  ( 𝑝 ‘ 0 )  =  𝐴 ) | 
						
							| 84 |  | eqcom | ⊢ ( 𝐵  =  ( 𝑝 ‘ 1 )  ↔  ( 𝑝 ‘ 1 )  =  𝐵 ) | 
						
							| 85 |  | eqcom | ⊢ ( 𝐶  =  ( 𝑝 ‘ 2 )  ↔  ( 𝑝 ‘ 2 )  =  𝐶 ) | 
						
							| 86 | 83 84 85 | 3anbi123i | ⊢ ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  ↔  ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 1 )  =  𝐵  ∧  ( 𝑝 ‘ 2 )  =  𝐶 ) ) | 
						
							| 87 | 86 | biimpi | ⊢ ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 1 )  =  𝐵  ∧  ( 𝑝 ‘ 2 )  =  𝐶 ) ) | 
						
							| 88 | 87 | adantl | ⊢ ( ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 1 )  =  𝐵  ∧  ( 𝑝 ‘ 2 )  =  𝐶 ) ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 1 )  =  𝐵  ∧  ( 𝑝 ‘ 2 )  =  𝐶 ) ) | 
						
							| 90 | 82 89 | jca | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 1 )  =  𝐵  ∧  ( 𝑝 ‘ 2 )  =  𝐶 ) ) ) | 
						
							| 91 | 1 | wlkpwrd | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑝  ∈  Word  𝑉 ) | 
						
							| 92 | 80 | eqeq2d | ⊢ ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  ↔  ( ♯ ‘ 𝑝 )  =  3 ) ) | 
						
							| 93 | 92 | adantl | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  ↔  ( ♯ ‘ 𝑝 )  =  3 ) ) | 
						
							| 94 |  | simp1 | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑝 )  =  3  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  𝑝  ∈  Word  𝑉 ) | 
						
							| 95 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑝 )  =  3  →  ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  ( 0 ..^ 3 ) ) | 
						
							| 96 |  | fzo0to3tp | ⊢ ( 0 ..^ 3 )  =  { 0 ,  1 ,  2 } | 
						
							| 97 | 95 96 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑝 )  =  3  →  ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  { 0 ,  1 ,  2 } ) | 
						
							| 98 | 32 | tpid1 | ⊢ 0  ∈  { 0 ,  1 ,  2 } | 
						
							| 99 |  | eleq2 | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  { 0 ,  1 ,  2 }  →  ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝑝 ) )  ↔  0  ∈  { 0 ,  1 ,  2 } ) ) | 
						
							| 100 | 98 99 | mpbiri | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  { 0 ,  1 ,  2 }  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ) | 
						
							| 101 |  | wrdsymbcl | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑝 ) ) )  →  ( 𝑝 ‘ 0 )  ∈  𝑉 ) | 
						
							| 102 | 100 101 | sylan2 | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  { 0 ,  1 ,  2 } )  →  ( 𝑝 ‘ 0 )  ∈  𝑉 ) | 
						
							| 103 | 40 | tpid2 | ⊢ 1  ∈  { 0 ,  1 ,  2 } | 
						
							| 104 |  | eleq2 | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  { 0 ,  1 ,  2 }  →  ( 1  ∈  ( 0 ..^ ( ♯ ‘ 𝑝 ) )  ↔  1  ∈  { 0 ,  1 ,  2 } ) ) | 
						
							| 105 | 103 104 | mpbiri | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  { 0 ,  1 ,  2 }  →  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ) | 
						
							| 106 |  | wrdsymbcl | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  1  ∈  ( 0 ..^ ( ♯ ‘ 𝑝 ) ) )  →  ( 𝑝 ‘ 1 )  ∈  𝑉 ) | 
						
							| 107 | 105 106 | sylan2 | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  { 0 ,  1 ,  2 } )  →  ( 𝑝 ‘ 1 )  ∈  𝑉 ) | 
						
							| 108 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 109 | 108 | tpid3 | ⊢ 2  ∈  { 0 ,  1 ,  2 } | 
						
							| 110 |  | eleq2 | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  { 0 ,  1 ,  2 }  →  ( 2  ∈  ( 0 ..^ ( ♯ ‘ 𝑝 ) )  ↔  2  ∈  { 0 ,  1 ,  2 } ) ) | 
						
							| 111 | 109 110 | mpbiri | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  { 0 ,  1 ,  2 }  →  2  ∈  ( 0 ..^ ( ♯ ‘ 𝑝 ) ) ) | 
						
							| 112 |  | wrdsymbcl | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  2  ∈  ( 0 ..^ ( ♯ ‘ 𝑝 ) ) )  →  ( 𝑝 ‘ 2 )  ∈  𝑉 ) | 
						
							| 113 | 111 112 | sylan2 | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  { 0 ,  1 ,  2 } )  →  ( 𝑝 ‘ 2 )  ∈  𝑉 ) | 
						
							| 114 | 102 107 113 | 3jca | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( 0 ..^ ( ♯ ‘ 𝑝 ) )  =  { 0 ,  1 ,  2 } )  →  ( ( 𝑝 ‘ 0 )  ∈  𝑉  ∧  ( 𝑝 ‘ 1 )  ∈  𝑉  ∧  ( 𝑝 ‘ 2 )  ∈  𝑉 ) ) | 
						
							| 115 | 97 114 | sylan2 | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑝 )  =  3 )  →  ( ( 𝑝 ‘ 0 )  ∈  𝑉  ∧  ( 𝑝 ‘ 1 )  ∈  𝑉  ∧  ( 𝑝 ‘ 2 )  ∈  𝑉 ) ) | 
						
							| 116 | 115 | 3adant3 | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑝 )  =  3  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( 𝑝 ‘ 0 )  ∈  𝑉  ∧  ( 𝑝 ‘ 1 )  ∈  𝑉  ∧  ( 𝑝 ‘ 2 )  ∈  𝑉 ) ) | 
						
							| 117 |  | eleq1 | ⊢ ( 𝐴  =  ( 𝑝 ‘ 0 )  →  ( 𝐴  ∈  𝑉  ↔  ( 𝑝 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 118 | 117 | 3ad2ant1 | ⊢ ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( 𝐴  ∈  𝑉  ↔  ( 𝑝 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 119 |  | eleq1 | ⊢ ( 𝐵  =  ( 𝑝 ‘ 1 )  →  ( 𝐵  ∈  𝑉  ↔  ( 𝑝 ‘ 1 )  ∈  𝑉 ) ) | 
						
							| 120 | 119 | 3ad2ant2 | ⊢ ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( 𝐵  ∈  𝑉  ↔  ( 𝑝 ‘ 1 )  ∈  𝑉 ) ) | 
						
							| 121 |  | eleq1 | ⊢ ( 𝐶  =  ( 𝑝 ‘ 2 )  →  ( 𝐶  ∈  𝑉  ↔  ( 𝑝 ‘ 2 )  ∈  𝑉 ) ) | 
						
							| 122 | 121 | 3ad2ant3 | ⊢ ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( 𝐶  ∈  𝑉  ↔  ( 𝑝 ‘ 2 )  ∈  𝑉 ) ) | 
						
							| 123 | 118 120 122 | 3anbi123d | ⊢ ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ↔  ( ( 𝑝 ‘ 0 )  ∈  𝑉  ∧  ( 𝑝 ‘ 1 )  ∈  𝑉  ∧  ( 𝑝 ‘ 2 )  ∈  𝑉 ) ) ) | 
						
							| 124 | 123 | 3ad2ant3 | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑝 )  =  3  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ↔  ( ( 𝑝 ‘ 0 )  ∈  𝑉  ∧  ( 𝑝 ‘ 1 )  ∈  𝑉  ∧  ( 𝑝 ‘ 2 )  ∈  𝑉 ) ) ) | 
						
							| 125 | 116 124 | mpbird | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑝 )  =  3  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 126 | 94 125 | jca | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑝 )  =  3  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑝  ∈  Word  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) ) | 
						
							| 127 | 126 | 3exp | ⊢ ( 𝑝  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑝 )  =  3  →  ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( 𝑝  ∈  Word  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) ) ) ) | 
						
							| 128 | 127 | adantr | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ( ♯ ‘ 𝑝 )  =  3  →  ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( 𝑝  ∈  Word  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) ) ) ) | 
						
							| 129 | 93 128 | sylbid | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑓 )  =  2 )  →  ( ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( 𝑝  ∈  Word  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) ) ) ) | 
						
							| 130 | 129 | impancom | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ♯ ‘ 𝑓 )  =  2  →  ( ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) )  →  ( 𝑝  ∈  Word  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) ) ) ) | 
						
							| 131 | 130 | impd | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑝 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑝  ∈  Word  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) ) ) | 
						
							| 132 | 91 77 131 | syl2anc | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑝  ∈  Word  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) ) ) | 
						
							| 133 | 132 | imp | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑝  ∈  Word  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) ) | 
						
							| 134 |  | eqwrds3 | ⊢ ( ( 𝑝  ∈  Word  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 𝑝  =  〈“ 𝐴 𝐵 𝐶 ”〉  ↔  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 1 )  =  𝐵  ∧  ( 𝑝 ‘ 2 )  =  𝐶 ) ) ) ) | 
						
							| 135 | 133 134 | syl | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑝  =  〈“ 𝐴 𝐵 𝐶 ”〉  ↔  ( ( ♯ ‘ 𝑝 )  =  3  ∧  ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 1 )  =  𝐵  ∧  ( 𝑝 ‘ 2 )  =  𝐶 ) ) ) ) | 
						
							| 136 | 90 135 | mpbird | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  𝑝  =  〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 137 | 136 | breq2d | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ↔  𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) | 
						
							| 138 | 137 | biimpd | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) | 
						
							| 139 | 138 | ex | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) ) | 
						
							| 140 | 139 | pm2.43a | ⊢ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  →  ( ( ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) | 
						
							| 141 | 140 | 3impib | ⊢ ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 142 | 141 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 143 |  | simpr2 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( ♯ ‘ 𝑓 )  =  2 ) | 
						
							| 144 | 142 143 | jca | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) | 
						
							| 145 | 144 | ex | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 146 | 145 | exlimdv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 147 | 146 | eximdv | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Walks ‘ 𝐺 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2  ∧  ( 𝐴  =  ( 𝑝 ‘ 0 )  ∧  𝐵  =  ( 𝑝 ‘ 1 )  ∧  𝐶  =  ( 𝑝 ‘ 2 ) ) )  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 148 | 76 147 | syl5com | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 149 | 148 | 3expib | ⊢ ( 𝐺  ∈  UMGraph  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) | 
						
							| 150 | 149 | com23 | ⊢ ( 𝐺  ∈  UMGraph  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) ) | 
						
							| 151 | 150 | imp | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 152 | 75 151 | impbid | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ∃ 𝑓 ( 𝑓 ( Walks ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ↔  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) | 
						
							| 153 | 9 152 | bitrd | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( 𝐴 ( 2  WWalksNOn  𝐺 ) 𝐶 )  ↔  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) ) |